Transcriptomic Analysis Reveals the Involvement of PpCYP703A2, Pp4CL, and PpABCG26 in Regulating Peach (Prunus persica) Pollen Fertility
YE Mao1,2, LIU Chun-Sheng1,2, LIU Ya-Ting1,2, ZHANG Man1,2, SU Kai1,2, ZHANG Chen-Guang1,2, LI Xiao-Ying1,2, WANG Hai-Jing1,2, XIAO Xiao1,2, ZHANG Li-Bin1,2, YANG Qing3,4, WU Jun-Kai1,2*
1 Horticultural Science and Technology College, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; 2 Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao 066000, China; 3 The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; 4 Institute of Tree Development and Gene Editing, Beijing Forestry University, Beijing 100083, China
Abstract:Many varieties of peach (Prunus persica) are self-fertile, where normal pollen development is essential for yield, and abnormal pollen development affects self-pollination fertilisation and fruit set. Hence, the study of peach pollen fertility is of great industrial and theoretical importance. The sterile variety 'JiuShuo' (JS) and the fertile variety 'JiuCui' (JC) and their hybrid progeny as test material were used to study pollen fertility genes. Cytological observations indicate that pollen sterility occurred at the mononuclear microspore stage, where the cytoplasm of the tapetum could not be concentrated and degenerated. RNA-seq analysis showed that the pathways associated with the formation of programmed cell death and the outer wall of the pollen layer - sugar metabolism, phenylalanine metabolism, fatty acid biosynthesis and oxidation-reduction were significantly enriched during the tetrad and mononuclear microspore periods. The expression patterns of cytochrome P450 703A2 (PpCYP703A2) (GenBank No. XM_007220109), 4-coumarate-CoA ligase-like 1 (Pp4CL) (GenBank No. XM_007225695), and ABC transporter G family member 26 (PpABCG26) (GenBank No. XM_020565361) were examined in the fertile variety JC, the sterile variety JS, and the JS×JC progeny , using qRT-PCR to detect the expression of related genes, suggest that these three genes were involved in the regulation of pollen fertility. A new genetic resource is provided for further study of peach pollen fertility and a new theoretical basis is developed for further understanding peach pollen sterility.
[1] 冯丽云, 张春芬, 聂园军, 等 . 2016. 苹果花药石蜡切片制片技术改良及其解剖学观察[J]. 中国农学通报, 32(31): 62-67. (Feng L Y, Zhang C F, Nie Y J, et al.2016. Im‐ provement of paraffin section methods and structural ob‐ servation of apple anther[J]. Chinese Agricultural Sci‐ ence Bulletin, 32(31): 62-67.) [2] 郝艳, 安明燕, 张岱琳, 等 . 2022. 不同贮藏条件对桃花粉萌发率和花粉管伸长速率的影响[J]. 河北科技师范学院学报, 36(01): 6-11. (Hao Y, An M, Zhang D, et al.2022. Effects of different storage conditions on the germina‐ tion rate and pollen tube elongation rate of peach pollen[J]. Journal of Hebei Normal University of Science Technology, 36(01): 6-11.) [3] 万淑媛, 李琴, 赵彩平 . 2022. MYB 基因家族在桃不同育性品种中的表达模式分析[J]. 西北农林科技大学学报 ( 自然科学版), 50(03): 97-106. (Wan S Y, Li Q, Zhao C.2022. Expression patterns of MYB gene family in peach cultivars with different fertility[J]. Journal of Northwest A&F University (Nat. Sci. Ed.), 50(03): 97-106. [4] Cai Y, Ma Z, Ogutu C O, et al.2021. Potential Association of Reactive Oxygen Species With Male Sterility in Peach[J]. Frontiers in Plant Science, 12: 653256. [5] Chang Z, Chen Z, Yan W, et al.2016. An ABC transporter, OsABCG26, is required for anther cuticle and pollen ex‐ ine formation and pollen-pistil interactions in rice[J]. Plant Science, 253: 21-30. [6] De Azevedo Souza C, Kim S S, Koch S, et al.2009. A novel fatty Acyl-CoA synthetase is required for pollen devel‐opment and sporopollenin biosynthesis in Arabidopsis[J]. Plant Cell, 21(2): 507-525. [7] De Pinto M C, Locato V, De Gara L.2012. Redox regulation in plant programmed cell death[J]. Plant, Cell & Envi‐ ronment, 35(2): 234-244. [8] Dirlewanger E, Cosson P, Boudehri K, et al.2006. Develop‐ment of a second-generation genetic linkage map for peach[Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit[J]. Tree Genetics & Genomes, 3(1): 1-13. [9] Eduardo I, De Tomás C, Alexiou K, et al.2020. Fine mapping of the peach pollen sterility gene (Ps/ps) and detection of markers for marker-assisted selection[J]. Molecular Breeding, 40(6): 57. [10] Elango D, Xue W, Chopra S.2020. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor[J]. Physiology and Molecular Biology of Plants, 26(8): 1727-1737. [11] Gabarayeva N I, Grigorjeva V V, Shavarda A L.2019. Mim‐ icking pollen and spore walls: Self-assembly in action[J]. Annals of Botany, 123(7): 1205-1218. [12] Gechev T S, Van Breusegem F, Stone J M, et al.2006. Reac‐ tive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. BioEssays: News and Reviews in Molecular, Cellular and Develop‐ mental Biology, 28(11): 1091-1101. [13] Goldberg R B, Beals T P, Sanders P M.1993. Anther develop‐ ment: Basic principles and practical applications.[J]. Plant Cell, 5(10): 1217-1229. [14] Grienenberger E, Besseau S, Geoffroy P, et al.2009. A BAHD acyltransferase is expressed in the tapetum of Arabidop- sis anthers and is involved in the synthesis of hydroxy‐cinnamoyl spermidines[J]. Plant Journal, 58(2): 246-259. [15] Gu J N, Zhu J, Yu Y, et al.2014. DYT1 directly regulates the expression of TDF1 for tapetum development and pol‐ len wall formation in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 80(6): 1005-1013. [16] Hoeberichts F A, Woltering E J.2003. Multiple mediators of plant programmed cell death: Interplay of conserved cell death mechanisms and plant-specific regulators[J]. BioEssays, 25(1): 47-57. [17] Huang Z, Shen F, Chen Y, et al.2021. Preliminary identifica‐ tion of key genes controlling peach pollen fertility using genome-wide association study[J]. Plants-Basel, 10(2):242. [18] Jiang J, Zhang Z, Cao J.2013. Pollen wall development: The associated enzymes and metabolic pathways[J]. Plant Biology, 15(2): 249-263. [19] Li N, Zhang D S, Liu H S, et al.2006. The rice tapetum de‐ generation retardation gene is required for tapetum deg‐ radation and anther development[J]. Plant Cell, 18(11):2999-3014. [20] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 25(4): 402-408. [21] Lou Y, Zhu J, Yang Z.2014. Molecular Cell Biology of Pollen Walls[M]. Applied Plant Cell Biology: 22. Berlin, Hei‐ delberg: Springer Berlin Heidelberg: 179-205. [22] Ma J, Sun S, Whelan J, et al.2021. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds[J]. Internation‐al Journal of Molecular Sciences, 22(8): 3877. [23] Mittler R, Vanderauwera S, Gollery M, et al.2004. Reactive oxygen gene network of plants[J]. Trends in Plant Sci‐ ence, 9(10): 490-498. [24] Quilichini T D, Friedmann M C, Samuels A L, et al.2010. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis [J]. Plant Physiology, 154(2): 678-690. [25] Quilichini T D, Grienenberger E, Douglas C J.2015. The bio‐ synthesis, composition and assembly of the outer pollen wall: A tough case to crack[J]. Phytochemistry, 113:170-182. [26] Schilmiller A L, Stout J, Weng J K, et al.2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis[J]. The Plant Journal: For Cell and Molecular Biology, 60(5): 771-782. [27] Tan B, Lian X, Cheng J, et al.2019. Genome-wide identifica‐ tion and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic ac‐ id are differentially expressed in the fruits of melting flesh and stony hard peach varieties[J]. BMC Genomics, 20(1): 892. [28] Uzair M., Xu D., Schreiber L,et al.2020. PERSISTENT TA‐ PETAL CELL2 Is required for normal tapetal pro‐ grammed cell death and pollen wall patterning1[J]. Plant Physiology, 182: 962-976. [29] Wan X, Wu S, Li Z, et al.2020. Lipid Metabolism: Critical roles in male fertility and other aspects of reproductive development in plants[J]. Molecular Plant, 13(7): 955-983. [30] Weng J K, Mo H, Chapple C.2010. Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation[J]. Plant Journal, 64(6): 898-911. [31] Xie X, Zhang Z, Zhao Z, et al.2020. The mitochondrial alde‐hyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice[J]. Journal of Experimental Botany, 71(9): 2551-2560. [32] Xiong S X, Lu J Y, Lou Y, et al.2016. The transcription fac‐ tors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthe‐ sis in Arabidopsis thaliana[J]. Plant Journal, 88(6): 936-946. [33] Xu J, Ding Z, Vizcay-Barrena G, et al.2014. ABORTED MI‐ CROSPORES acts as a master regulator of pollen wall formation in Arabidopsis[J]. Plant Cell, 26(4): 1544-1556. [34] Xu J, Yang C, Yuan Z, et al.2010. The ABORTED MICRO‐ SPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana [J]. Plant Cell, 22(1): 91-107. [35] YanM Y, Xie D L, Cao J J, et al.2020. Brassinosteroid-medi‐ ated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato[J]. Plant Jour‐ nal, 102(5): 931-947. [36] Yang X, Liang W, Chen M, et al.2017. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum pro‐ grammed cell death and male fertility[J]. Planta, 246(1): 105-122. [37] Yang X, Wu D, Shi J, et al.2014. Rice CYP703A3, a cyto‐ chrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine[J]. Journal of Integra‐ tive Plant Biology, 56(10): 979-994. [38] Yu J, Zhang D.2019. Molecular control of redox homoeosta‐ sis in specifying the cell identity of tapetal and micro‐ sporocyte cells in rice[J]. Rice, 12(1): 42. [39] Zhang D, Shi J, Yang X.2016. Role of lipid metabolism in plant pollen exine development[J]. Sub-Cellular Bio‐ chemistry, 86: 315-337. [40] Zhang Z, Hu M, Xu W, et al.2021. Understanding the molecu‐ lar mechanism of anther development under abiotic stresses[J]. Plant Molecular Biology, 105(1): 1-10.