Screening of Key Genes for Ovarian Hypoplasia and Analysis of Differential Gene Expression in Mulard Ducks (Cairina moschata)
LI Li1,2, ZHANG Lin-Li1, MIAO Zhong-Wei1, ZHU Zhi-Ming1, QIU Jun-Zhi2, WANG Juan3, XIN Qing-Wu1, ZHENG Nen-Zhu1,*
1 Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2 College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 3 Ganzhou Agriculture College, Ganzhou 341100, China
Abstract:Mulard duck is an inter-genus hybrid product of Muscovy duck (Cairina moschata) and domestic duck (Anas plalyrhynchas var. domestica),which has strong heterosis but no reproductive ability. In actual production, it is necessary to raise the parents of Mulard ducks, and with the help of artificial insemination technology, the process is cumbersome and the feeding management cost is high, which severely restricts the development of Mulard duck production. Due to the particularity of the sterile traits of Mulard ducks, the analysis of differentially expressed genes in the ovarian tissues of Mulard ducks has not been reported. The information on related genes in the GenBank sequence database is relatively scarce. The genetic basis of infertility needs further research. Transcriptome sequencing (RNA-seq) technology could not only be used for analysis of tissue changes after virus infection, but also for gene mining and functional annotation. In order to explore the molecular mechanism of genes related to ovarian hypoplasia and infertility in Mulard duck, transcriptome sequencing was performed on the ovarian tissues of Mulard ducks and Pekin ducks, the differentially expressed genes related to ovarian differentiation and development were screened, and the genes were annotated with Gene Ontology (GO) and KEGG, and then the qRT-PCR was used to verify the sequencing results. A total of 43.84 Gb clean data and 193 535 Unigenes were obtained in the sequencing. A total of 89 differentially expressed genes related to ovarian development, sex hormone synthesis and germ cell differentiation and development were found between two types of ducks, among them 17 genes were down-regulated, 72 genes were up-regulated in Mulard ducks, Go functional annotation differential genes were enriched in 591 GO terms, in which the significantly enriched calcium-mediated signal transduction was related to germ cell differentiation and development. KEGG analysis showed that differentially expressed genes are enriched in 15 signal pathways, Including glycosides biosynthesis-ganglion series, steroid hormone biosynthesis pathway and tyrosine metabolism related to the synthesis and secretion of sex hormones. The results of qRT-PCR showed that the expression trends of up-regulated and down-regulated genes in Mulard ducks were consistent with the transcriptome sequencing results, indicating that the transcriptome sequencing data was more reliable. This study provides theoretical reference for exploring the differentiation mechanism of the special reproductive system of Mulard ducks.
[1] 常洪. 1980. 家畜远缘杂交不育机制探讨[J].国外畜牧科技, (4): 21-24. (Chang H. 1980. The mechanism of distant cross sterility in domestic animals[J]. Animal Science Abroad, (4): 21-24.) [2] 李娟. 2016. 豁眼鹅卵巢组织产蛋性能相关基因的筛选及表达分析[D]. 硕士学位论文, 沈阳农业大学, 导师: 栾新红, pp. 7-8. (Li J.2016. Secrening and exppression analysis of genes related to laying production in huoyan geesee ovarian tissue[D]. Thesis for M.S., Shenyang Agricultural Universityy, Suppervisor: Luan X H, pp. 7-8.) [3] 李盛霖, 陈晖, 郑嫩珠, 等. 2005. 白羽半番鸭选育研究与开发应用前景分析[J]. 福建农业学报, 20(12): 165-167. ( Li S L, Chen H, Zheng N Z, et al.2005. Study on the breeding of white plumage Mulard duck and analysis of its developing prospect[J]. Fujian Journal of Agricultural Sciences, 20(12): 165-167.) [4] 刘贤侠, 冯欣璐, 赵宗胜, 等. 2013. 鸡与鹌鹑杂交种早期胚胎与性分化相关的ER等基因的表达[J].畜牧兽医学报, 44(12): 320-326. (Liu X X, Feng X L, Zhao Z S, et al.2013. Expression analysis of genes related to sexual differentiation during the early development of chicken-quail hybrid embryos[J]. Acta Veterinaria et Zootechnica Sinica, 44(12): 320-326.) [5] 毛宁, 王嘉福, 张福平, 等. 2018. 香猪卵巢StAR和CYP11A1基因的差异表达研究[J]. 中国畜牧兽医, 45342(05): 18-25. (Mao N, Wang J F, Zhang F P, et al.2018. Study on differential expression of StAR and CYP11A1 genes in Xiang Pig ovary[J]. China Animal Husbandry and Veterinary Medicine, 45342(05): 18-25.) [6] 施少华, 陈珍, 程龙飞, 等. 2020. 鸭源H7N9亚型禽流感病毒感染SPF鸡转录组学分析[J]. 中国人兽共患病学报, 36(10): 72-79. (Shi S H, Chen Z, Cheng L F, et al.2020. Transcriptomic expression profiles of SPF chicken infected with duck-origin H7N9 subtype avian influenza virus[J]. Chinese Journal of Zoonoses, 36(10): 72-79.) [7] 宋建捷, 檀俊秩, 陈晖, 等. 1996. 家鸭和番鸭属间杂交F1代雌鸭繁殖性能的研究[J]. 畜牧兽医学报, 27(3): 226-230. (Song J J, Tan J Z, Chen H, et al.1996. Studies on reproductive performance of intergeneric hy brid female F1 between Domestic duck and Muscovy duck[J]. Acta Veterinaria et Zootechinca Sinica, 27(3): 226-230.) [8] 檀俊秩, 陈晖, 宋建捷, 等. 1998. 半番鸭繁殖性状的研究[J].福建农业学报, 13(2): 41-45. (Tan J Z, Chen H, Song J J, et al.1998. Studies on reproductive character of Mulard duck[J]. Journal of Fujian Agricultural Sciences, 13(2): 41-45.) [9] 王旭平, 杨胜林, 陆曼, 等. 2018. 番鸭攻击行为的转录组学研究[J]. 农业生物技术学报, 26(4): 687-697. (Wang X P, Yang S L, Lu M, et al.2018. Transcriptomics analysis of the aggressive behavior of muscovy duck (Cairna moschata)[J]. Journal of Agricultural Biotechnology, 26(4): 687-697.) [10] 杨童奥, 杨雅涵, 杨福合, 等. 2016. 从染色体数目和配对联会角度分析动物远缘杂交雄性不育的研究进展[J]. 特产研究, 38(1): 58-62. (Yang T A, Yang Y N, Yang H F, et al.2016. Advance on research of male sterility of animal distant hybridization from the perspectives of the chromosome number and autosyndetic pairing[J]. Special Wild Economic Animal and Plant Research, 38(1): 58-62.) [11] 于祥国. 2013. 尼罗罗非鱼类固醇激素合成关键基因3β-HSD和StAR的相关研究[D]. 硕士学位论文, 西南大学, 导师: 周林燕. pp. 6-9. (Yu X G.2013. Study on key genes 3β-HSD and StAR of the steroidogenesis in Nile tilapia[D]. Thesis for M.S., Southwest University, Suppervisor: Zhou L Y, pp. 6-9.) [12] 张涛, 刘贺贺, 罗俊, 等. 2017. 鸭输卵管壳腺部参与绿壳蛋性状形成的miRNAs富集与分析[J]. 农业生物技术学报, (1): 133-141. (Zhang T, Liu H H, Luo J, et al.2017. Enrichment and analysis of mirnas involve in the formation of blue shell-egg trait in duck (Anas platyrhynchos) oviduct shell gland[J]. Journal of Agricultural Biotechnology, 25(1): 133-141.) [13] 郑嫩珠, 李盛霖, 陈晖. 2010. 福建省白羽半番鸭及其母本选育[J]. 中国家禽, 32(14): 5-8. (Zheng N Z, Li S L, Chen H.2010. White Mulard duck and female parent breeding in fujian province[J]. China Poultry, 32(14): 5-8.) [14] 郑云, 吴荣军, 张绍卓, 等. 2005. 骡鸭繁殖特性的研究进展[J]. 中国家禽, 27(12): 47-49. (Zheng Y, Wu R J, Zhang S Z, et al.2005. Research progress on the reproductive characteristics of Mule Duck[J]. China Poultry, 27(12): 47-49.) [15] 朱志明, 陈红萍, 林如龙, 等. 2016. 山麻鸭开产期和产蛋高峰期卵巢组织转录组分析[J]. 中国农业科学, 49(005): 998-1007. (Zhu Z M, Chen H P, Lin R L, et al.2016. Transcriptome analysis of ovary tissue in early laying period and egg laying peak period of Shanma ducks[J]. Scientia Agricultura Sinica, 49(005): 998-1007.) [16] Ayers K L, Lambeth L S, Davidson N M, et al.2015. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq[J]. BMC Genomics, 16(1): 704-723 [17] Bauer M P, Bridgham J T, Langenau D M, et al.2000. Conservation of steroidogenic acute regulatory (StAR) protein structure and expression in vertebrates[J]. Molecular and cellular endocrinology, 168(12): 119-125. [18] Chan G K, Liu S T, Yen T J.2005. Kinetochore structure and function[J]. Trends in Cell Biology, 15(11): 589-598. [19] Fukagawa T, Mikami Y, Nishihashi A, et al.2001. CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells[J]. EMBO Journal, 20(16): 4603-4617. [20] Fukagawa T.2015. Cell Division: A new role for the kinetochore in central spindle assembly[J]. Current Biology, 25(13): R554-R557. [21] Haas B, Papanicolaou A, Yassour M, et al.2013. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis[J]. Nature Protocol, 8(8): 1494-1512. [22] Hillier L W, Miller W, Birney E, et al.2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J]. Nature, 432(7018): 695-716. [23] Huang Y H, Li Y R, Burt D W, et al.2013. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species[J]. Nature Genetics, 45(7):776-783. [24] Kitazume S,. Kitajim K,. Inou S, et al.1994. Developmental expression of trout egg polysialoglycoproteins and the prerequisite alpha-2,6-sialyl, and alpha-2,8-sialyl and alpha-2,8-polysialyltransferase activities required for their synthesis during oogenesis[J]. The Journal Biological Chemistry, 269(14): 10330-10340. [25] Korevaar TIM, Mínguez-Alarcón L, Messerlian C, et al.2018. Association of thyroid function and autoimmunity with ovarian reserve in women seeking infertility care[J]. Thyroid, 28(10): 1349-1358. [26] Li L, Zhang L L, Zhang Z H, et al.2020. Comparative transcriptome and histomorphology analysis of testis tissues from Mulard and Pekin ducks[J]. Archives Animal Breeding, 63(2): 303-313. [27] Lu L Z, Chen Y, Wang Z, et al.2015. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver[J]. Genome Biology, 16(1): 89-101. [28] Miller W L, Bose H S.2011. Early steps in steroidogenesis: Intracellular cholesterol trafficking[J]. The Journal of Lipid Research, 52(12): 2111-2135. [29] Nishihashi A, Haraguchi T, Hiraoka Y.et al.2002. CENP-I is essential for centromere function in vertebrate cells[J]. Developmental Cell, 2(4): 463-476. [30] Payne A H, Hales D B.2004. Overview of seroidogenic enzymes in the pathway from cholesterol to active steroid hormones[J]. Endocrine Reviews, 25(6): 947-970 [31] Roeszler K N, Itman C, Sinclair A H, et al.2012. The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis[J]. Developmental Biology, 366(2): 317-326. [32] Schnaar R L, Gerardy-Schahn R, Hildebrandt H.2014. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration[J]. Physiological Reviews, 94(2): 461-518. [33] Simard J, Ricketts M L, Sébastien G, et al.1996. Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family[J]. Endocrine Reviews, 26(4): 525-582. [34] Speer G.2013. The impact of thyroid function in women of reproductive age: Infertility, pregnancy and the postpartum period[J]. Orvosi Hetilap, 154(51): 2017-2023. [35] Tao Z, Song W, Zhu C, et al.2017. Comparative transcriptomic analysis of high and low egg-producing duck ovaries[J]. Poultry Science, 96(12): 4378-4388 [36] Trapnell C, Williams B A, Pertea G.et al.2010. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 28(5): 511-515. [37] Tsuchiya M, Inoue K, Matsuda H, et al.2003. Expression of steroidogenic acute regulatory protein (StAR) and LH receptor in MA-10 cells[J]. Life Sciences, 73(22): 2855-2863. [38] Unuane D, Velkeniers B, Anckaert E, et al.2013.Thyroglobulin autoantibodies: Is there any added value in the detection of thyroid autoimmunity in women consulting for fertility treatment?[J]. Thyroid, 23(8): 1022-1028. [39] Venuto M T, Martorell-Ribera J, Bochert R, et al.2020. Characterization of the polysialylation status in ovaries of the Salmonid Fish (Coregonus maraena) and the Percid Fish (Sander lucioperca)[J]. Cells, 9(11): 2391. [40] Wang S M, Wu R .2009. The double danger of ethanol and hypoxia: Their effects on a hepatoma cell line[J]. International Journal of Clinical & Experimental Pathology, 2(2): 182-189. [41] Wang S S, Zhang Y, Xu Q, et al.2018. The differentiation of preadipocytes and gene expression related to adipogenesis in ducks (Anas platyrhynchos)[J]. PLOS ONE, 13(5):e0196371. [42] Wang Y, Chen Q, Liu Z, et al.2017. Transcriptome analysis on single small yellow follicles reveals that Wnt4 is involved in chicken follicle selection[J]. Frontiers in Endocrinology, 8 : 317-331. [43] Xu Q, Zhao W M, Chen Y, et al.2013. Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes[J]. PLOS ONE. 8(2): e55496. [44] Yang F, Fu B, Patricia C M, et al.2004. Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules[J]. Chromosome Research, 12(1): 65-76. [45] Yang T A, Liu H M, Yang Y H, et al.2020. Identification of key genes associated with spermatogenesis arrest in fox hybrids using weighted gene co-expression network analysis[J]. Theriogenology, 147(4): 92-101. [46] Young M D, Wakefield M J, Smyth G K, et al.2010. Gene ontology analysis for RNA-seq: Accounting for selection bias[J]. Genome Biology, 11(2): R14. [47] Yu X, Wu L, Xie L, et al.2014. Characterization of two paralogous star genes in a teleost, nile tilapia oreochromis niloticus[J]. Molecular and Cellular Endocrinology, 392(1-3): 152-162. [48] Zhang R P, Liu H H, Liu J Y, et al.2015. Transcriptional profiling identifies location-specific and breed-specific differentially expressed genes in embryonic myogenesis in Anas platyrhynchos[J]. PLOS ONE, 10(12): e0143378. [49] Zhang T, Chen L, Han K P, et al.2019. Transcriptome analysis of ovary in relatively greater and lesser egg producing Jinghai Yellow Chicken[J]. Animal Reproduction Science, 208(10): 106-114. [50] Zhu Z M, Miao Z W, Chen H P, et al.2017. Ovarian transcriptomic analysis of Shanma ducks at peak and late stages of egg production[J]. Asian-Australasian Journal of Animal Sciences, 30(9): 1215-1224.