Abstract:Polyamines are involved in regulating the development and regeneration of nervous system.To study the developmental changes of polyamine metabolism in cerebrum and cerebellum tissues from Nonghua ducks (Anas platyrhynchos) at different day-age, polyamine content in cerebrum and cerebellum tissues from ducks at 0~120 day-age were determined by HPLC. The relative abundance of genes related to polyamine metabolism were determined by qPCR. The result showed that contents of spermidine and spermine in cerebrum and cerebellum tissues were significantly higher than putrescine (P<0.05), and the contents of polyamine decreased with the increase of day-age. Putrescine content (30.80 mg/kg) in cerebrum tissues at 60 day-age was significantly higher than others (P<0.05). Spermidine content (643.26 mg/kg) in cerebrum tissues at 0 day-age was significantly higher than others (P<0.05). Spermine content in cerebrum tissues at 0 day-age (1665.95 mg/kg) and 120 day-age (1623.66 mg/kg) were significantly higher than others (P<0.05). Spermidine (54.09 mg/kg) and spermine (413.5 mg/kg) contents in cerebellum tissues at 0 day-age were significantly higher than others (P<0.05). Putrescine content in cerebellum tissues at 0 day-age (26.46 mg/kg) and 120 day-age (22.03 mg/kg) were significantly higher than others (P<0.05). The expression levels of key genes related to polyamine metabolism decreased in cerebrum tissues of ducks at 30 day-age, increased at 60 day-age, decreased at 90 day-age, and then increased at 120 day-age. The expression levels of key genes related to polyamine metabolism in cerebellum tissues of ducks at 0 day-age were relatively higher than that of other ducks. The trend in gene expression levels was different. This study reveals the changes of polyamine content and the expression levels of key genes related to polyamine metabolism in brain tissues from different age ducks, and provides basic data for polyamine regulating brain growth and development in ducks.
康丽鹃, 周雪敏, 但红颖, 葛凡滋, 李硕, 王鑫, 王泽龙, 牛春阳, 郭永妮, 康波. 农华麻鸭脑组织多胺含量及其代谢相关基因表达的研究[J]. 农业生物技术学报, 2022, 30(10): 1954-1961.
KANG Li-Juan, ZHOU Xue-Min, DAN Hong-Ying, GE Fan-Zi, LI Shuo, WANG Xin, WANG Ze-Long, NIU Chun-Yang, GUO Yong-Ni, KANG Bo. Study on Polyamine Content and Expression of Polyamine Metabolism Genes in Brain Tissues from Nonghua Ducks (Anas platyrhynchos). 农业生物技术学报, 2022, 30(10): 1954-1961.
[1] 操勇清, 曾涛, 沈军达, 等. 2020. 6个蛋鸭品种产蛋性能比较分析[J]. 中国畜牧杂志, 56(04): 41-45. (Cao Y Q, Zeng T, Shen J D, et al.2020. Comparision and analysis of egg production performance in six laying duck breeds[J]. Chinese Journal of Animal Science, 56(04): 41-45.) [2] 王继文, 胡继伟, 李亮. 2019. 提高农华麻鸭种鸭产蛋率的关键措施[J]. 科学种养, (04): 43-46. (Wang J W, Hu J W, Li L. 2019. Key measures to improve egg production of Nonghua Ma duck[J]. Scientific breeding, (04): 43-46.) [3] 王珍珍. 2020. 不同蛋鸭品种产蛋性能的比较分析及绍兴鸭产蛋性能的全基因组关联分析[D]. 硕士学位论文, 浙江师范大学, 导师: 卢立志, pp. 1-74. (Wang Z Z.2020. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Thesis for M.S., Zhejiang Normal University, Supervisor: Lu L Z, pp. 1-74.) [4] 吴康. 2018. 肉鸭胸骨骨化模式及其与胸肌发育关系的研究[D]. 硕士学位论文, 四川农业大学, 导师: 王继文, 马敏, pp. 1-60. (Wu K.2018. Study on sternal ossification of meat ducks and its relationship with breast muscle development[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Wang J W, Ma M, pp. 1-60.) [5] Austad S N.2019. Sex differences in health and aging: a dialog between the brain and gonad?[J] Geroscience, 41(3): 267-273. [6] Baroli G, Sanchez J R, Agostinelli E, et al.2020. Polyamines: The possible missing link between mental disorders and epilepsy (Review)[J]. International Journal of Molecular Medlclne, 45(1): 3-9. [7] Benedikt J, Inyushin M, Kucheryavykh Y V, et al.2012. Intracellular polyamines enhance astrocytic coupling[J]. Neuroreport, 23(17): 1021-1025. [8] Cervelli M, Amendola R, Polticelli F, et al.2012. Spermine oxidase: Ten years after[J]. Amino Acids, 42(2-3): 441-450. [9] Chang H M, Wu H C, Sun Z G, et al.2019. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: Physiological and pathophysiological implications[J]. Human Reproduction Update, 25(2): 224-242. [10] Chaturvedi R, De Sablet T, Peek R M, et al.2012. Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk[J]. Gut Microbes, 3(1): 48-56. [11] Fredriksson R, Sreedharan S, Nordenankar K, et al.2019. The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain[J]. Plos Genetics, 15(12): e1008455. [12] Haas K Z, Sperber E F, Opanashuk L A, et al.2001. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling[J]. Hippocampus, 11(6): 615-625. [13] Jing Y, Zhang H, Wolff A R, et al.2013. Altered arginine metabolism in the hippocampus and prefrontal cortex of maternal immune activation rat offspring[J]. Schizophrenia Research, 148(1-3): 151-156. [14] Kang B, Jiang D M, He H, et al.2017. Effect of Oaz1 overexpression on goose ovarian granulosa cells[J]. Amino Acids, 49(6): 1123-1132. [15] Laschet J, Trottier S, Leviel V, et al.1999. Heterogeneous distribution of polyamines in temporal lobe epilepsy[J]. Epilepsy Research, 35(2):161-172. [16] Laube G, Bernstein H, Veh R, et al.2014. The rationale for the localization of polyamine pathway enzymes in the brain[J]. The Journal of Neurobehavioral Sciences, 1(3): 77. [17] Lenis Y Y, Elmetwally M A, Maldonado-Estrada J G, et al.2017. Physiological importance of polyamines[J]. Zygote, 25(3): 1-12. [18] Liu P, Fleete M S, Jing Y, et al.2014. Altered arginine metabolism in Alzheimer's disease brains[J]. Neurobiology of Aging, 35(9): 1992-2003. [19] Liu Z, Yang Y, Silveira D C, et al.1999. Consequences of recurrent seizures during early brain development[J]. Neuroscience, 92(4): 1443-1454. [20] Madeo F, Eisenberg T, Pietrocola F, et al.2018. Spermidine in health and disease[J]. Science, 359(6374): eaan2788. [21] Metur S P, Klionsky D J.2020. The curious case of polyamines: Spermidine drives reversal of B cell senescence[J]. Autophagy, 16(3): 389-390. [22] Moschou P N, Roubelakis-Angelakis K A.2014. Polyamines and programmed cell death. Journal of experimental botany, 65(5): 1285-1296. [23] Neuman M G, Malnick S, Maor Y, et al.2015. Alcoholic liver disease: Clinical and translational research[J]. Experimental and Molecular Pathology, 99(3): 596-610. [24] Pegg A E.2013. Toxicity of polyamines and their metabolic products[J]. Chemical Research in Toxicology, 26(12): 1782-1800. [25] Proietti E, Rossini S, Grohmann U, et al.2020. Polyamines and kynurenines at the intersection of immune modulation[J]. Trends in Immunology, 41(11): 1037-1050. [26] Sanchez-Perez A, Llansola M, Cauli O, et al.2005. Modulation of NMDA receptors in the cerebellum. Ⅱ. Signaling pathways and physiological modulators regulating NMDA receptor function[J]. The Cerebellum, 4(3): 162-170. [27] Shin J, Shen F, Huguenard J R.2005. Polyamines modulate AMPA receptor-dependent synaptic responses in immature layer v pyramidal neurons[J]. Journal of Neurophysiology, 93(5): 2634-2643. [28] Vivó M, Ver ND, Cortés R, et al.2001. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders[J]. Neuroscience Letters, 304(1-2): 107-111. [29] Wallace H M, Fraser A V, Hughes, A.2003. A perspective of polyamine metabolism[J]. Biochemical Society, 376(1): 1-14. [30] Zawia N H, Harry G J.1993. Correlations between developmental ornithine decarboxylase gene expression and ezyme activity in the rat brain[J]. Developmental Brain Research, 71(1): 53-57. [31] Zhang J, Jing Y, Zhang H, et al.2018. Effects of maternal immune activation on brain arginine metabolism of postnatal day 2 rat offspring[J]. Schizophrenia Research, 192: 431-441.