Effects of Different Storage Conditions on the Content of Chlorophyll and Expression Analysis of Related Genes in Celery (Apium graveolens)
JIA Min, ZHU Sheng-Qi, WANG Ya-Hui, TAN Shan-Shan, LIU Jie-Xia, XIONG Ai-Sheng*
College of Horticulture, Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
Abstract:Celery (Apium graveolens) is an important leafy vegetable with high nutritional values and numerous medicinal functions. Chlorophyll content is one of the important indexes to evaluate the quality of celery during storage after harvest. The influence on the content of chlorophyll in celery under different postharvest environmental conditions is still unclear. In this study, 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' were stored at 3 different storage conditions of room temperature (25 ℃), low temperature (4 ℃) and darkness at room temperature (25 ℃). The chlorophyll contents and the expression levels of metabolism-related genes (AgMPE, AgPPH, AgPAO, AgCAO, AgNOL and AgHCAR) were detected at 0, 6, 24, 30, 48 and 54 h after treatment. The results showed that the average contents of chlorophyll a and chlorophyll b were the highest under low temperature treatment, and total accumulation of chlorophyll was the highest at low temperature storage except for 24 and 30 h, and the peak of total chlorophyll content appeared at low temperature. The total chlorophyll content under darkness at room temperature condition was higher than that under room temperature condition. The transcription level of AgCAO gene changed significantly with the increase of storage time, which was consistent with the accumulation pattern of chlorophyll b. The results indicated that low temperature condition inhibited the degradation of chlorophyll content and could better maintain the chlorophyll content of celery. Low temperature could maintain the nutritional and sensory quality of celery. This study provides a reference for exploring the regulation pattern of chlorophyll accumulation and related genes in celery after harvest.
贾敏, 朱胜琪, 王雅慧, 谭杉杉, 刘洁霞, 熊爱生. 不同贮藏条件对芹菜叶绿素含量的影响及相关基因表达分析[J]. 农业生物技术学报, 2022, 30(6): 1078-1086.
JIA Min, ZHU Sheng-Qi, WANG Ya-Hui, TAN Shan-Shan, LIU Jie-Xia, XIONG Ai-Sheng. Effects of Different Storage Conditions on the Content of Chlorophyll and Expression Analysis of Related Genes in Celery (Apium graveolens). 农业生物技术学报, 2022, 30(6): 1078-1086.
[1] 陈亮, 毛永民, 董祯. 2008. 鲜枣果实贮藏保鲜技术研究进展[J]. 落叶果树, 2: 29-33. (Chen L, Mao Y M, Dong Z.2008. Research progress of fresh jujube fruit storage and preservation technology[J]. Deciduous Fruit, 2: 29-33.) [2] 程顺昌, 魏宝东, 熊振华, 等. 2014. 西兰花采后贮藏保鲜技术研究进展[J]. 食品科学, 35(07): 270-275. (Cheng S C, Wei B D, Xiong Z H, et al.2014. Research progress on storage and preservation technology of broccoli after harvest[J]. Food Science, 35(07): 270-275.) [3] 程雪, 宋晓萱, 刘毓鑫, 等. 2020. 镉胁迫对芹菜幼苗叶绿素含量和生理指标的影响[J]. 农业科技通讯, 04: 168-171. (Cheng X, Song X X, Liu Y X, et al.2020. Effects of cadmium stress on chlorophyll content and physiological indexes of celery seedlings[J]. Journal of Agricultural Science and Technology, 04: 168-171.) [4] 顾振新, 陆兆新, 汪志君, 等. 2003. 光照对蕹莱贮藏效果的影响[J]. 扬州大学学报(农业与生命科学版), 24(3): 68-71. (Gu Z X, Lu Z X, Wang Z J, et al.2003. Effects of light on one's ability to store water[J]. Journal of Yangzhou University (Agriculture & Life Sciences), 24(3): 68-71.) [5] 胡锋, 黄俊丽, 秦峰, 等. 2011. 植物叶绿体类囊体膜及膜蛋白研究进展[J]. 生命科学, 23(03): 291-298. (Hu F, Huang J L, Qin F, et al.2011. Advances in the study of chloroplast thylakoid membrane and membrane proteins in plants[J]. Life Science, 23(03): 291-298.) [6] 黄蔚. 2017. 温度胁迫对芹菜叶中叶绿素合成与抗坏血酸含量的影响[D]. 硕士学位论文, 南京农业大学, 导师: 熊爱生. pp. 13-30. (Huang W.2017. Effects of temperature stress on chlorophyll synthesis and ascorbic acid content in celery leaves[D]. Thesis for M. S., Nanjing Agricultural University, Supervisor: Xiong A S. pp. 13-30.) [7] 梁凤玲, 王武, 杨妍, 等. 2012. 青菜贮藏保鲜工艺研究[J]. 食品工业科技, 33(13): 342-345. (Liang F L, Wang W, Yang Y, et al.2012. Research on storage and preservation technology of green vegetables[J]. Science and Technology of Food Industry, 33(13): 342-345.) [8] 林达定, 张国防, 于静波, 等. 2011. 芳樟不同无性系叶片光合色素含量及叶绿素荧光参数分析[J]. 植物资源与环境学报, 20(03): 56-61. (Lin D D, Zhang G F, Yu J B, et al.2011. Analysis of photosynthetic pigment content and chlorophyll fluorescence parameters in leaves of different clones of Cinnamomum camphora[J]. Journal of Plant Resources and Environment, 20(03): 56-61.) [9] 刘玉军, 徐桂燕, 王英, 等. 2021. 贮藏温度对叶菜类蔬菜采后品质的影响[J]. 中国果菜, 41(03): 1-6. (Liu Y J, Xu G Y, Wang Y, et al.2021. Effects of storage temperature on postharass quality of leafy vegetables[J]. Chinese Fruits and Vegetables, 41(03): 1-6.) [10] 孟祥州, 严菊, 邢宏堃, 等. 2015. 水稻NOL (NYC1-like)基因序列多样性、单倍型效应以及表达谱分析[J]. 分子植物育种, 13(3): 491-496. (Meng X Z, Yan J, Xing H K, et al.2015. Sequence diversity, haplotype effect and expression profile analysis of NOL (NYC1-like) gene in rice[J]. Molecular Plant Breeding, 13(3): 491-496.) [11] 乔勇进, 高春霞, 甄凤元, 等. 2018. 贮藏温度对鸡毛菜贮藏品质的影响[J]. 上海农业学报, 34(2): 94-98. (Qiao Y J, Gao C X, Zhen F Y, et al.2018. Effect of storage temperature on storage quality of chicken cabbage[J]. Acta Agriculturae Shanghai, 34(2): 94-98.) [12] 唐蕾. 2008. 脱镁叶绿酸a单加氧酶与叶绿素降解[J]. 生命的化学, 28(5): 606-609. (Tang L.2008. Pheophorbide a monooxygenase and chlorophyll degradation[J]. Journal of Life Chemistry, 28(5): 606-609.) [13] 王若辉, 郑悦雯, 吴书天, 等. 2021. 贮藏温度对干核桃品质的影响效应[J]. 中国粮油学报, 1-13. (Wang R H, Zheng Y W, Wu S T, et al.2021. Effect of storage temperature on quality of dried walnut[J]. Journal of Chinese Cereals and Oils Society, 1-13.) [14] 魏如月, 张慧兰, 阚文杰, 等. 2021. 外源独脚金内酯缓解小麦干旱胁迫的机制研究[J]. 安徽大学学报(自然科学版), 45(05): 98-108. (Wei R Y, Zhang H L, Kan W J, et al.2021. Mechanism of exogenous strigolactone in alleviating drought stress in wheat[J]. Journal of Anhui University (Natural Science), 45(05): 98-108.). [15] 谢晶, 张利平, 苏辉, 等. 2013. 上海青蔬菜的品质变化动力学模型及货架期预测[J]. 农业工程学报, 29(15): 271-278. (Xie J, Zhang L P, Su H, et al.2013. Dynamic model of quality change and shelf life prediction of green vegetables in Shanghai[J]. Agricultural Engineering, 29(15): 271-278.) [16] 熊爱生. 2019. 伞形科蔬菜种质资源学[M]. 江苏凤凰科学技术出版社, 江苏. pp. 73-100. (Xiong A S.2019. Germplasm Resources of Apiaceae Vegetables[M]. Jiangsu Phoenix Science and Technology Press, Jiangsu. pp. 73-100.) [17] 许娟, 车凤斌, 胡柏文, 等. 2010. 不同贮藏温度对阿克苏骏枣贮藏效果的研究[J]. 新疆农业科学, 47(11): 2135-2139. (Xu J, Che F B, Hu B W, et al.2010. Study on the effect of different storage temperatures on the storage of Aksu Junjube[J]. Xinjiang Agricultural Sciences, 47(11): 2135-2139.) [18] 杨建虹, 陶冶. 2002. 大量分离叶绿素a和b的方法[J]. 植物生理学通讯, 38(2): 156-158. (Yang J H, Tao Y.2002. Separation of chlorophyll a and b in large quantities[J]. Plant Physiology Communications, 38(2): 156-158.) [19] 曾庆孝. 2015. 食品加工与保藏原理[M]. 化学工业出版社, 北京. pp. 148-152. (Zeng Q X.2015. Principle of food processing and preservation[M]. Chemical Industry Press, Beijing. pp. 148-152.) [20] 张伟, 李翠萍, 张兴国, 等. 2015. 转拟南芥CAO基因烟草的构建及弱光耐受性分析[J]. 南方农业学报, 46(06): 951-957. (Zhang W, Li C P, Zhang X G, et al.2015. Construction and low light tolerance analysis of transgenic Arabidopsis tobacco with CAO gene[J]. Journal of Southern Agriculture, 46(06): 951-957.) [21] 周辉, 卢向阳, 田云, 等. 2006. 芹菜化学成分及药理活性研究进展[J]. 氨基酸和生物资源, 01: 6-9, 15. (Zhou H, Lu X Y, Tian Y, et al.2006. Research progress on chemical constituents and pharmacological activities of celery[J]. Amino Acids and Biological Resources, 01: 6-9, 15.) [22] 朱伟. 2017. 芹菜在储藏与烹饪过程中营养品质变化及营养素降解动力学模型的研究[D]. 硕士学位论文, 河南工业大学, 导师: 吕莹果. pp.9-24. (Zhu W.2017. Study on dynamic model of nutrient quality change and nutrient degradation of celery during storage and cooking[D]. Thesis for M. S., Henan University of Technology, Supervisor: Lv Y G. pp.9-24.) [23] Feng K, Hou X L, Li M Y, et al.2018. CeleryDB: A genomic database for celery[J]. Database (Oxford), bay070: 1-8. [24] Gandul-Rojas B, Minguez-Mosquera M I.1996. Chlorophyll and carotenoid composition in virgin olive oils from various Spanish olive varieties[J]. Journal of the Science of Food and Agriculture, 72(1): 31-39. [25] Huang W, Ma H Y, Huang Y, et al.2017. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress[J]. Physiologia Plantarum, 161(4): 468-485. [26] Jia X L, Wang G L, Xiong F, et al.2015. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: Novel insights into lignin biosynthesis during celery leaf development[J]. Scientific Reports, 5: 8259. [27] Lee S, Kim J H, Yoo E Set al.2005. Differential regulation of chlorophyll a oxygenase genes in rice[J]. Plant Molecular Biology, 57(6): 805-818. [28] Li M Y, Feng K, Hou X L, et al.2020. The genome sequence of celery (Apium graveolens), an important leaf vegetable crop rich in apigenin in the Apiaceae family[J]. Horticulture Research, 7(1): 9. [29] Li M Y, Hou X L, Wang F, et al.2018. Advances in the research of celery, an important Apiaceae vegetable crop[J]. Critical Reviews in Biotechnology, 38(2): 172-183. [30] Pfaffl M W.2001. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 29(9): e45. [31] Shindo H, Suzuki R, Tsuchiya W, et al.2012. PHD finger of the SUMO ligase Siz/PIAS family in rice reveals specific binding for methylated histone H3 at lysine 4 and arginine 2[J]. Febs Letters, 586(13): 1783-1789.