Cloning and Functional Analysis of Zinc Finger Protein Gene BrZFP1 in Brassica campestris
XU Jia1, ZHAO Yu-Hong2, HOU Xian-Fei3, TAO Xiao-Lei1, SUN Bai-Lin1, ZENG Rui1, ZHU Ming-Chuan1, SUN Wan-Cang1, WU Jun-Yan1, LIU Li-Jun1, LI Xue-Cai1,*, MA Li1,*
1 College of Agronomy/Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Lab of Crop Genetic and Germplasm Enhancement/Gansu Research Center of Rapeseed Engineering and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Yasheng Agricultural Research Institute Co.Lt., Lanzhou 730070, China; 3 Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Abstract:Zinc finger protein transcription factors are one of the largest transcription factor families in plants, which participating in various biological processes such as apoptosis, autophagy and dryness maintenance, play an important role in regulating plant growth and development,and in response to adversity stress. In order to study the function of zinc finger protein gene in Brassica campestris, B. campestris variety 'Longyou 7' cDNA and gDNA were used as templates to clone the BrZFP1 gene (GenBank No. OK546027). Bioinformatics analysis of BrZFP1 gene sequence was carried out, and the transient transformation expression vector of Nicotiana tabacum was constructed for subcellular localization. Finally, the expression levels of BrZFP1 in leaves, growth cones and roots under low temperature, drought, high temperature and salt stress were detected by qPCR. The results showed that BrZFP1 encoded 160 amino acids, the predicted molecular weight of the protein was 17.094 kD, and the isoelectric point was 9.34. The gene had no intron and encoding a hydrophilic stable protein with a double conserved domain zf-C2H2_6. PlantCARE analysis results showed that the promoter region of BrZFP1 gene contained multiple cis-acting elements such as low temperature response, light response, meristem-related and hormone-related. The similarity between BrZFP1 amino acid sequence and homologous sequence of B. campestris was 98.75%. Subcellular localization showed that the protein was localized in the nucleus. Under low temperature stress, the change of BrZFP1 gene expression in the growth cone was consistent with the results of transcriptome sequencing, and the expression level showed an upward trend. Under different stress treatments, the expression of BrZFP1 gene in different parts increased to different degrees, drought and high temperature could strongly induce the expression of BrZFP1 gene. These results suggested that BrZFP1 gene might played an important regulatory role in abiotic stress in B. rapa. This study provides reference for further study on the function of BrZFP1 protein.
[1] 邓文星, 张映. 2007. 实时荧光定量PCR技术综述[J]. 生物技术通报,(5): 93-95, 103.95, 103.) [2] 韩占品, 任健, 于玮玮,等. 2018. 花椰菜ERF114基因的克隆及Gateway技术构建表达载体[J]. 西南农业学报, 31(06): 1128-1134. (Han Z P, Ren J, Yu W W, et al.2018. Cloning of ERF114 gene from Cauliflower and construction of expression vector by Gateway technology[J]. Southwest China Journal of Agricultural Sciences, 31(06): 1128-1134.) [3] 胡军华, 王大伟, 杨明磊, 等. 2018. 番茄C2H2型锌指蛋白的鉴定及生物信息学分析[J]. 江苏农业科学, 46(12): 23-27. (Hu J H, Wang D W, Yang M L, et al.2018. Identification and bioinformatics analysis of C2H2 zinc finger protein in tomato[J]. Jiangsu Agricultural Sciences, 46(12): 23-27.) [4] 李琳, 丁峰, 潘介春, 等. 2020. 植物锌指蛋白转录因子家族研究进展[J]. 热带农业科学, 40(02): 65-75. (Li L, Ding F, Pan J C, et al.2020. Research progress on family of plant Zinc-finger protein transcription factors[J]. Chinese Journal of Tropical Agriculture, 40(02): 65-75.) [5] 刘慧, 郭丹丽, 蔡大润, 等. 2016. 小拟南芥ApZFP基因异源超表达促进拟南芥开花并提高耐逆性[J]. 植物学报, 51(03): 296-305. (Liu H, Guo D L, Cai D R, et al.2016. Heterologous overexpression of ApZFP promotes flowering and improves abiotic tolerance in Arabidopsis thaliana[J]. Bulletin of Botany, 51(03): 296-305.) [6] 刘金仙, 阙友雄, 郑益凤, 等. 2009. 甘蔗锌指蛋白基因的克隆和表达分析[J]. 农业生物技术学报, 17(04): 707-712. (Liu J X, Que Y X, Zheng Y F, et al.2009. Molecular cloning of sugarcane zinc finger protein gene and its expression analysis[J]. Chinese Journal of Agricultural Biotechnology, 17(04): 707-712.) [7] 刘焱, 邢立静, 李俊华, 等. 2012. 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应[J]. 植物学报, 47(04): 366-378. (Liu Y, Xing L J, Li J H, et al.2012. Rice B-box zinc finger protein OsBBX25 is involved in the abiotic response[J]. Bulletin of Botany, 47(04): 366-378.) [8] 刘洋, 吴学彦, 李海燕. 2007. 植物低温诱导转录因子CBF研究进展[J]. 生物技术通报, 05: 43-48. (Liu Y, Wu X Y, Li H Y.2007. Progress on plant CBF transcriptional factor induced by cold[J]. Biotechnology Bulletin, 05: 43-48.) [9] 吕艳, 黄涌, 邹锡玲, 等. 2020. 油菜抗低温的评价指标与分子生理机制研究进展[J]. 中国油料作物学报, 42(04): 527-535. (Lv Y, Huang Y, Zou X L, et al.2020. Reaserches on evaluation, physiological and molecular mechanism of rapeseed low-tempreature resistance[J]. Chinese Journal of Oil Crop Sciences, 42(04): 527-535.) [10] 马骊. 2016. 白菜型冬油菜与甘蓝型冬油菜抗寒性分析[D]. 硕士毕业论文, 甘肃农业大学, 导师: 孙万仓, 刘自刚, pp: 1-9. (Ma L.2016. Analysis of cold resistance of winter rapeseed of Brassica rapa and Brassica napus[D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Sun W C, Liu Z G, pp: 1-9) [11] 宁露云, 李蓓, 包满珠, 等. 2015. 矮牵牛冷响应锌指蛋白基因PhTZF1的分离与表达分析[J]. 华中农业大学学报, 34(02): 24-30. (Ning L Y, Li B, Bao M Z, et al.2015. Cloning and expression analysis of a cold responsive zinc-finger protein gene PhTZF1 in Petunia hybrida[J]. Journal of Huazhong Agricultural University, 34(02): 24-30.) [12] 王东, 杨金水. 2002. 棉花类耐盐锌指蛋白基因的克隆与结构分析[J]. 复旦学报(自然科学版), 41(1): 42-46. (Wang D, Yang J S.2002. Cloning and characterization of cDNA encoding cotton STZ-like protein[J]. Journal of Fudan University (Natural Science), 41(1): 42-46.) [13] 王海波, 龚明, 刘潮, 等. 2017. 小桐子转录因子JcZAT10基因的分离与低温表达分析[J]. 中国油料作物学报, 39(06): 805-812. (Wang H B, Gong M, Liu C, et al.2017. Isolation and chilling expression of JcZAT10 gene from Jatropha curcas[J]. Chinese Journal of Oil Crop Sciences, 39(06): 805-812.) [14] 王旭达, 张高华, 王鹤, 等. 2020. 锌指蛋白基因ZAT12提高转基因高油酸花生抗寒性[J]. 分子植物育种, 18(16): 5351-5360. (Wang X D, Zhang A H, Wang H, et al.2020. Enhancing cold tolerance of transgenic high oleic peanut by zinc finger protein gene ZAT12[J]. Molecular Plant Breeding, 18(16): 5351-5360.) [15] 魏梦园, 刘爱丽, 黎冬华, 等. 2020. 芝麻CCCH锌指蛋白基因SiC3H1的克隆及表达分析[J]. 分子植物育种, 18(24): 7982-7988. (Wei M Y, Liu A L, Li D H, et al.2020. Cloning and expression analysis of CCCH zinc finger protein gene SiC3H1 from sesame[J]. Molecular Plant Breeding, 18(24): 7982-7988.) [16] 项孙寰. 2020. 辣椒炭疽zf-C2H2基因家族的生物信息学分析[J]. 农业技术与装备, 367(07): 61-64, 67.(Xiang S H. 2020. Bioinformatics analysis of zf-C2H2 gene family of Colletotrichum Gloeosporioides[J]. Agricultural Technology & Equipment, 367(07): 61-64, 67.) [17] 杨永飞, 葛常伟, 沈倩, 等. 2020. 陆地棉苗期低温响应基因GhZAT10的克隆及功能研究[J]. 棉花学报, 32(04): 305-315. (Yang Y F, Ge C W, Shen Q, et al.2020. Cloning and functional analysis of low temperature response gene, GhZAT10, in upland cotton at seedling stage[J]. Cotton Science, 32(04): 305-315.) [18] 张帆, 杨仲南, 张森. 2009. 拟南芥PHD-finger蛋白家族的全基因组分析[J]. 云南植物研究, 31(03): 227-238. (Zhang F, Yang Z N, Zhang S.2009. Genome-wide analysis of PHD-finger protein family in Arabidopsis thaliana[J]. Acta BotanicaYunnanica, 31(03): 227-238.) [19] 钟婵娟, 彭伟业, 王冰, 等. 2020. 植物逆境响应相关的C2H2型锌指蛋白研究进展[J]. 植物生理学报, 56(11): 2356-2366. (Zhong C J, Peng W Y, Wang B, et al.2020. Advances of plant C2H2 zinc finger proteins in response to stresses[J]. Plant Physiology Journal, 56(11): 2356-2366.) [20] Agarwal P, Arora R, Ray S, et al.2007. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis[J]. Plant Molecular Biology, 65(4): 467-485. [21] Berg J M, Shi Y.1996. The galvanization of biology: A Growing appreciation for the roles of zinc[J]. Science, 271(5252): 1081-1085. [22] Bogamuwa S, Jang J C.2013. The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination[J]. Plant Cell Environment, 36(8): 1507-1519. [23] Davletova S, Schlauch K, Coutu J, et al.2005. The zinc-finger protein Zat12 plays a central role in reactive oxygen an d abiotic stress signaling in Arabidopsis[J]. Plant Physiology, 139(2): 847-856. [24] Englbrecht C C, Schoof H, Böhm S.2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome[J]. BMC Genomics, 5(1): 39-46. [25] Guan Q J, Ma H Y, Wang Z J, et al.2016. A rice LSD1-like-type ZFP gene OsLOL5 enhances saline-alkaline tolerance in transgenic Arabidopsis thaliana, yeast and rice[J]. BMC Genomics, 17(1): 142-152. [26] Jonathan T, Vogel, Daniel G, et al.2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. Plant Journal, 41(2): 3-4. [27] Kim J C, Lee H Y, Cheong H Y, et al.2001. A novel cold‐inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant Journal, 25(3): 247-259. [28] Kim S H, Hong J K, Lee S C, et al.2004. CAZFP1, Cys 2/His 2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum[J]. Plant Molecular Biology, 55(6): 883-904. [29] Li Y, Chu Z N, Luo J Y,et al.2018. The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B[J]. Plant Biotechnology Journal, 16(6): 1201-1213. [30] Ma L, Coulter J A, Liu L J, et al.2019. Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (Brassica rapa L.)[J]. International Journal of Molecular Sciences, 20(5): 1071-1089. [31] Moore M, Ullman C.2003. Recent developments in the engineering of zinc finger proteins[J]. Brief Funct Genomics 1(4): 342-355. [32] Nguyen X C, Kim S H, Lee K, et al.2012. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase[J]. Plant Cell Reports, 31(4): 737-745. [33] Nina D, Laura Z, Sabrina E, et al.2002. The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif[J]. Nucleic Acids Research, 30(22): 4945-4951. [34] Park H Y, Seok H Y, Park B K, et al.2008. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress[J]. Biochemical And Biophysical Research Communications, 375(1): 80-85. [35] Rizhsky L, Davletova S, Liang H J, et al.2004. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. Journal of Biological Chemistry, 279(12): 11736-11743. [36] Sakamoto H, Araki T, Meshi T, et al.2000. Expression of a subset of the Arabidopsis Cys 2 /His 2-type zinc-finger protein gene family under water stress[J]. Gene, 248(1): 23-32. [37] Sparkes I A, Runions J, Kearns A, et al.2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 1(4): 2019-2025. [38] Takatsuji H, Mori M, Benfey P N, et al.1992. Characterization of a zinc finger DNA-binding protein expressed specifically in petunia petals and seedlings[J]. The EMBO Journal, 11(1): 241-249. [39] Teng K, Tan P H, Guo W E, et al.2018. Heterologous expression of a novel Zoysia japonica C2H2 zinc finger gene, ZjZFN1, improved salt tolerance in Arabidopsis[J]. Frontiers in Plant Science, 9: 1159-1171. [40] Uwe S, Jakob P, Henriette O, et al.2007. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts[J]. Proceedings of the National Academy of Sciences of the USA, 104(3): 1069-1074. [41] Xu T, Gu L L, Choi M J, et al.2017. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses[J]. PLOS ONE, 9(5): e96877. [42] Yin M Z, Wang Y P, Zhang L H, et al.2017. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress[J]. Journal of Experimental Botany, 68(11): 2991-3005. [43] Yuan X, Huang P, Wang R Q, et al.2018. A zinc finger transcriptional repressor confers pleiotropic effects on rice growth and drought tolerance by down-regulating stress-responsive genes[J]. Plant Cell Physiology, 59(10): 2129-2142. [44] Zeng D E, Hou P, Xiao F M, et al.2014. Overexpressing a novel RING-H2 finger protein gene, OsRHP1, enhances drought and salt tolerance in rice (Oryza sativa)[J]. Journal of Plant Biology, 57(6): 357-369. [45] Zhang H, Zhao T Y, Zhuang P T, et al.2016. NbCZF1, a novel c2h2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in Nicotiana benthamiana[J]. Plant Cell Physiology, 57(12): 2472-2484. [46] Zhou Z J, Sun L L, Zhao Y Q, et al.2013. Zinc finger protein 6 (ZFP 6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana[J]. New Phytologist, 198(3): 699-708.