Transcriptome-wide Identification and Cold Stress Expression Analysis of EfPHD-finger Family Genes in Erianthus fulvus
ZHANG Rong-Qiong1,2,*, QIAN Zhen-Feng1,2,*, GU Shu-Jie2,3, RAO Xi-Bing2,3, SHEN Qing-Qing2,3, LYU Shao-Zhi2,3, ZHAO Xue-Ting2,3, CHEN Shu-Ying2,3, WANG Xian-Hong2,3, HE Li-Lian1,2,3,**, LI Fu-Sheng1,2,3,**
1 The Key Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China; 2 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; 3 Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
Abstract:Erianthus fulvus, a relative wild species of sugarcane (Saccharum spp.), plays an important role in the study of sugarcane stress resistance. PHD-finger (plant homeodomain finger) protein is a transcription regulator that can respond to biological and abiotic stresses.In this study, based on the transcriptome identification of the EfPHD-finger family genes in Erianthus fulvus, bioinformatics and cold stress expression patterns were analyzed. The results showed that a total of 38 EfPHD-finger genes were identified. The number of amino acids encoded by EfPHD-finger genes ranged from 145 to 2 268, the molecular weight of EfPHD-finger proteins ranged from 16.161 0 to 251.333 7 kD, and the isoelectric point ranged from 4.35 to 9.66. The average hydrophilic coefficient ranges from -1.094 to 0.035. Subcellular localization indicated that all 37 EfPHD-finger proteins were in the nucleus, and only EfPHD24 was in the nucleus and chloroplast. Phylogenetic tree analysis demonstrated that 38 EfPHD-finger proteins were divided into 7 groups. Analysis of cold stress expression patterns based on transcriptome data revealed that 38 EfPHD-finger genes were differentially expressed under different degrees of cold stress. Among them, EfPHD13, EfPHD16, EfPHD21, EfPHD25, EfPHD28, EfPHD32, EfPHD34, and EfPHD38 were up-regulated, and EfPHD13 was sustained up-regulated, with the largest up-regulated multiple. The 8 up-regulated genes were verified by qPCR, and the correlation between the verification results and transcriptome sequencing results was analyzed. The results showed that the correlation of EfPHD25 and EfPHD28 genes was weak, and the correlation of other genes was strong (R≥0.90). Furthermore, EfPHD13 gene (GenBank No. OK356615) was cloned. Its CDS length was 1 863 bp, encoding 620 amino acids, containing PHD_MMD1_like domain, multiple phosphorylation sites, no signal peptide and transmembrane structure. This study provides reference for further research on the cold stress response function of PHD-finger family genes in Erianthus fulvus.
[1] 曹哲群, 肖芙荣, 陈疏影, 等. 2017. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定[J]. 作物杂志, 180(5): 43-48. (Cao Z Q, Xiao F R, Chen S Y, et al.2017. Identification of cold tolerance in seven wild sugarcane and three offsprings at seedling stage[J]. Crops, 180(5): 43-48.) [2] 陈乃钰, 张国香, 张力爽, 等. 2021. ABF转录因子在植物响应非生物胁迫中的作用[J]. 植物遗传资源学报, 22(04): 930-938. (Chen N Y, Zhang G X, Zhang L S, et al.2021. The role of ABF transcription factors in response to abiotic stress in plant[J]. Journal of Plant Genetic Resources, 22(04): 930-938.) [3] 冯英, 刘庆坡, 薛庆中. 2004. 水稻与拟南芥PHD finger蛋白的系统分析[J]. 遗传学报, 31(11): 1284-1293. (Feng Y, Liu Q P, Xue Q Z, 2004. Comparative phylogenetic analysis of the rice and Arabidopsis PHD-finger proteins[J]. Journal of Genetics and Genomics, 31(11): 1284-1293.) [4] 黎洁怡. 2021. 调控塞内卡病毒A感染的关键磷酸化修饰蛋白的鉴定与功能研究[D]. 硕士学位论文, 中国农业科学院, 导师: 张永光, pp. 14-20. (Li J Y, 2021. Study on identification and function of key phosphoproteins regulating senecavirus A infection[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Zhang Y G, pp. 14-20.) [5] 刘营, 尹泽, 江姚兰, 等. 2021. 甘蔗ScNRAMP基因家族的全基因组鉴定与生物信息学分析[J/OL]. 广西植物, 1-13. DOI:10.11931/guihaia.gxzw202104005. (Liu Y, Yin Z, Jiang Y L, et al.2021. Identification and bioinformatics analysis of ScNRAMP gene family in sugarcane[J/OL]. Guihaia, 1-13. DOI:10.11931/guihaia.gxzw202104005.) [6] 刘雨, 刘春霞, 李早霞, 等. 2011. 植物同源结构域(PHD)-finger家族转录因子OsPHD1的过量表达可提高水稻的耐逆性能[J]. 农业生物技术学报, 19(03): 462-469. (Liu Y, Liu C X, Li Z X, et al.2011. Overexpression of a plant homedomain (PHD)-finger transcription factor, OsPHD1, can enhance stress tolerance in rice[J]. Journal of Agricultural Biotechnology, 19(03): 462-469.) [7] 马卉. 2014. 水稻PHD-finger家族低温诱导基因的鉴定与启动子功能分析[D]. 博士学位论文, 安徽农业大学, 导师: 杨剑波, pp.30-31. (Ma H.2014. Cold-inducible related gene idendification and promoter functional analysis of PHD-finger transcription factors family in rice[D]. Thesis for Ph.D., Anhui Agricultural University, Supervisor: Yang J B, pp. 30-31.) [8] 孟玉, 陈疏影, 徐荣, 等. 2018. 蔗茅野生种响应低温胁迫的数字基因表达谱[J].分子植物育种, 16(12): 3877-3886. (Meng Y, Chen S Y, Xu R, et al.2018. Digital gene expression profiles of wild species of Erianthus fulvus response to low temperature stress[J]. Molecular Plant Breeding, 16(12): 3877-3886.) [9] 钱禛锋, 孟玉, 徐荣, 等. 2021. 蔗茅野生种ErDREB1A基因的克隆与表达分析[J]. 基因组学与应用生物学, 40(02): 827-834. (Qian Z F, Meng Y, Xu R, et al.2021. Cloning and expression analysis of ErDREB1A gene in the wild species of Erianthus fulvus[J]. Genomics and Applied Biology, 40(02): 827-834.) [10] 钱禛锋, 何丽莲, 李富生. 2020. DREB转录因子研究进展及其在甘蔗抗逆育种中的应用[J]. 中国糖料, 42(03): 19-24. (Qian Z F, He L L, Li F S.2020. Research progress on DREB transcription factor and its application in sugarcane stress-tolerance breeding[J]. Sugar Crops of China, 42(03): 19-24.) [11] 钱禛锋, 谷书杰, 赵雪婷, 等. 2022. 基于转录组的蔗茅CML基因家族鉴定及冷胁迫表达分析[J]. 农业生物技术学报, 30(05): 885-895. (Qian Z F, Gu S J, Zhao X T, et al.2021. Transcriptome-wide identification and cold stress expression analysis of CML gene family in Erianthus fulvus[J]. Journal of Agricultural Biotechnology, 30(05):885-895.) [12] 阙友雄, 许莉萍, 徐景升, 等. 2009. 甘蔗基因表达定量PCR分析中内参基因的选择[J]. 热带作物学报, 30(03): 274-278. (Que Y X, Xu L P, Xu J S, et al.2009. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane[J]. Chinese Journal of Tropical Crops, 30(03): 274-278.) [13] 沈先岳, 徐荣, 吴清莲, 等. 2020. 甘蔗与蔗茅杂交亲本及后代材料的抗旱性鉴定[J]. 中国农学通报, 36(20): 7-13. (Shen X Y, Xu R, Wu Q L, et al.2020. Saccharum spp. × Erianthus fulvus and their hybrid offspring: Identification of drought resistance[J]. Chinese Agricultural Science Bulletin, 36(20): 7-13.) [14] 王依隆,赵海红, 沈英姿, 等. 2020. 大豆GmPHD3基因的克隆及逆境表达分析[J].大豆科学, 39(04): 500-508. (Wang Y L, Zhao H H, Shen Y Z, et al.2020. Cloning and abiotic expression analysis of GmPHD3 gene in soybean[J]. Soybean Science, 39(04): 500-508.) [15] 王天一, 王应祥, 尤辰江. 2021. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 43(04): 323-339. (Wang T Y, Wang Y X, You C J.2021. Structural and functional characteristics of plant PHD domain-containing proteins[J]. Hereditas (Beijing), 43(04): 323-339.) [16] 徐超华, 李纯佳, 苏火生, 等. 2017. 甘蔗非生物胁迫抗性研究进展[J]. 植物遗传资源学报, 18(03): 483-493. (Xu C H, Li C J, Su H S, et al.2017. Progress in the studies on abiotic stress resistance of sugarcane (Saccharum spp.)[J]. Journal of Plant Genetic Resources, 18(03): 483-493.) [17] 杨雷, 谢宗铭, 司爱君, 等. 2013. 棉花植物同源结构域(PHD)转录因子在非生物胁迫中的表达分析[J]. 新疆农业科学, 50(03): 409-416. (Yang L, Xie Z M, Si A J, et al.2013. Expression of cotton (Gossypium hirsutum L.) plant homeodomain transcription factors (PHD) under abiotic stress[J]. Xinjiang Agricultural Sciences, 50(03): 409-416.) [18] 杨溥原, 崔江慧, 任根增, 等. 2020. 高粱PHD-Finger基因家族的鉴定、分类及表达特征分析[J].山地农业生物学报, 39(04): 10-20. (Yang P Y, Cui J H, Ren G Z, et al.2020. Identification, classification and expression characteristics of sorghum PHD-Finger gene family[J]. Journal of Mountain Agriculture and Biology, 39(04): 10-20.) [19] 杨珺凯, 沈阳, 才晓溪, 等. 2019. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 190(03): 55-65. (Yang J K, Shen Y, Cai X X, et al.2019. Genome-wide identification and expression patterns analysis of the PHD family protein in Glycine max[J]. Crops, 190(03): 55-65.) [20] 袁丁, 焦梦婷, 许成, 等. 2020. 竹节参β-香树素合成酶基因克隆及生物信息学分析[J]. 中草药, 51(19): 5028-5034. (Yuan D, Jiao M T, Xiu C, et al.2020. Cloning and bioinformatic analysis of β-AS gene from Panax japonicus[J]. Chinese Traditional and Herbal Drugs, 51(19): 5028-5034.) [21] 张新, 李明娟, 张斌, 等. 2016. 水稻PHD-finger转录因子基因OsMsr16增强耐盐性的可能性研究[J]. 基因组学与应用生物学, 35(07): 1820-1827. (Zhang X, Li M J, Zhang B, et al.2016. Possibility study on improving salt tolerance of rice by overexpressing PHD-finger transcription factor gene OsMsr16[J]. Genomics and Applied Biology, 35(07): 1820-1827.) [22] Alam I, Liu C C, Ge H L, et al.2019. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L.[J]. BMC Genomics, 20: 773. [23] An J P, Wang X F, Zhang X W, et al.2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation[J]. Plant Biotechnology Journal, 18(2): 337-353. [24] Ashwin N J, Chakravarthi M, Nerkar Gauri, et al.2020. Overexpression of expansion EaEXPA1, a cell wall loosening protein enhances drought tolerance in sugarcane[J]. Industrial Crops & Products, 159: 113035. [25] Cao Y P, Han Y H, Meng D D, et al.2018. Systematic analysis and comparison of the PHD-finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development[J]. Functional & Integrative Genomics, 18(5): 519-531. [26] Huang X, Song X P, Chen R F, et al.2019. Genome-wide analysis of the DREB subfamily in Saccharum spontaneum reveals their functional divergence during cold and drought stresses[J]. Frontiers in Genetics, 10: 1326-1326. [27] Julia B S, Jane E P, Elizabeth A A, et al.2019. Genetic strategies for improving crop yields[J]. Nature, 575(7781): 109-118. [28] José F G, Zoe A W.2014. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development[J]. Plant Biotechnology Journal, 12(6): 765-777. [29] Pan F Y, Luo Q W, Wu W L, et al.2019. Screening and simple identification of drought-resistant lines in sugarcane breeding[J]. Asian Agricultural Research, 11(05): 67-70, 75. [30] Robert S A, Grant M, Jones J D.2011. Hormone crosstalk in plant disease and defense: More than just JASMONATE-SALICYLATE antagonism[J]. Annual Review of Phytopathology, 49: 317-343. [31] Tobias D, Richard C, Peer B.2001. DDT-a novel domain in different transcription and chromosome remodeling factors[J]. Trends in Biochemical Sciences, 26(3): 145-146. [32] Wang Q Q, Liu J Y, Wang Y, et al.2015. Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response[J]. International Journal of Molecular Sciences, 16(10): 23517-23544. [33] Winicov I.2000. Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J]. Planta,210(3): 416-422. [34] Winicov I, Bastola D R.1999. Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J]. Plant Physiology, 120(2): 473-480. [35] Zhu J K.2016. Abiotic stress signaling and responses in plants[J]. Cell, 167(2): 313-324. [36] Zoe A W, Shaun M M, Janet D, et al.2001. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD‐finger family of transcription factors[J]. The Plant Journal, 28(1): 27-39. [37] Zhang D F, Wu S W, An X L, et al.2018. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor[J]. Plant Biotechnology Journal, 16(2): 1-13.