Abstract:The Pin-formed acicular protein (PIN), one of the plant auxin transporters, affects the quality of cotton (Gossypium spp.) fibers. Understanding the expression characteristics of GbPIN1a (GenBank No. KAB2059844.1) in sea-island cotton (G. barbadense) fiber can provide a reference for exploring the mechanism of fiber quality development. In this study, the gene was cloned by PCR technology, and the bioinformatics analysis was carried out; A transient expression vector containing GFP was constructed and cell localization analysis was carried out. The results showed that the length of the coding region of GbPIN1a was 1 758 bp, and 585 amino acids were encoded; two conserved domains including Mem trans were contained in amino acid sequence; GbPIN1a gene showed a high expression trend at 15 and 20 DPA (days post anthesis) of fiber development and was significantly negatively correlated with auxin content at the same time period (P<0.05); The expression level in roots and stems was significantly higher than that in leaves (P<0.05), with tissue specificity; The expression level fluctuated when stimulated by exogenous auxin; The expressed product was localized on the cell membrane. The results of this study preliminarily indicate that the GbPIN1a gene may be involved in the regulation of cotton fiber development, provide basic data for future research on PIN1a genes.
[1] 白玉林, 韩春丽, 勾玲, 等. 2008. 不同纤维品质棉花纤维发育过程中内源激素含量变化及与品质的关系[J]. 新疆农业科学, 045(A02): 5-11. (Bai Y L, Han C L, Ling G. Zhang W F, et al.2008. Fiber quality and changes of endogenous hormone in different cotton varieties during fiber development[J]. Xinjiang Agricultural Sciences. 045(A02): 5-11.) [2] 崔大勇, 王海霞. 2015. 陆生植物生长素合成的主要途径及调控[J]. 生物学教学, 40(9): 2-5. (Cui D Y, Wang H X.2015. Main approaches and regulation of auxin synthesis in terrestrial plants[J]. Biology Teaching, 40(9): 2-5.) [3] 董合忠, 徐楚年, 余炳生. 1990. 陆地棉与海岛棉纤维发育的比较研究Ⅱ.棉纤维的伸长、加厚和纤维品质[J]. 北京农业大学学报, 5(2): 137-142. (Dong H Z, Xu C N, Yu B S.1990. A comparative study on cotton fiber development between upland cotton and sea-island cotton Ⅱ.cotton fiber elongation,secondary wall thickening and fiber quality[J]. Journal of Beijing Agricultural University. 5(2): 137-142.) [4] 黄娟. 2017. 生长素对棉花纤维次生壁沉积的影响[D]. 硕士学位论文, 西南大学, 导师: 裴炎, pp.20-32. (Huang J, 2017. Effectsof auxin on the secondary wall deposition of cotton fibers[D]. Thesis for M.S., Southwest University, Supervisor: Pei Y, pp. 20-32.) [5] 李爱国. 2008. AB-QTL法定位海岛棉产量及纤维品质基因[D]. 湖南农业大学, 导师: 余筱南. pp.8-18. (Li A G.2008. AB-QTL genes related to yield and fiber quality in sea island cotton[D]. Hunan Agricultural University, Supervisor: Yu X N. pp. 8-18.) [6] 李文兰, 孟昭东. 2019. 玉米PIN家族基因在雌花序发育过程中的表达分析[J]. 山东农业科学, 334(06): 23-27. (Li W L, Meng Z D.2019. Expression analysis of zmPIN family genes in female inflorescence development of maize[J]. Shandong Agricultural Sciences, 334(06): 23-27.) [7] 毛玮, 曹跃芬. 2018. 棉纤维发育的遗传特性及相关基因的研究进展[J]. 浙江农林大学学报, 035(006): 1155-1165. (Mao W, Cao Y F.2018. Genetic characteristics and research advances of genes related to cotton fiber development[J]. Journal of Zhejiang A&F University, 035(006): 1155-1165.) [8] 潘晶晶. 2014. IAA对棉仁营养品质的影响及其与纤维分化发育间关系的研究[D]. 浙江大学, 导师: 陈进红, pp. 44-60. (Pan J J.2014. Effects of IAA on nutritional quality of cotton kernel and its relationship with fiber differentiation and development[D]. Zhejiang University, Supervisor: Chen J H, pp. 44-60.) [9] 邰红忠, 练文明, 卢金宝.2013. 新疆海岛棉育种现状及存在问题[J]. 中国棉花, 40(6): 15-17. (Tai H Z, Lian W M, Lu J B.2013. Current situation and existing problems of sea-island cotton breeding in Xinjiang[J]. China Cotton, 40(6): 15-17) [10] 王海涛, 刘存敬, 唐丽媛, 等. 2019.河北省杂交棉培育现状及发展趋势[J]. 作物杂志. 19(05): 1-8. (Wang H T, Liu C J, Tang L Y, et al.2019. Breeding status and development trend of hybrid cotton in Hebei Province[J]. Crops. 19(05): 1-8.) [11] 吴嫚, 于霁雯, 李龙云, 等. 2015. 海岛棉与陆地棉纤维发育时期差异表达基因的比较分析[C]. 中国棉花学会年会, 1: 66-67. (Wu M, Yu J W, Li L Y, et al.2015. Comparative analysis of differentially expressed genes between island cotton and upland cotton during fiber development[C]. Annual meeting of Cotton Society of China, 1: 66-67.) [12] 邢朝柱, 靖深蓉, 袁有禄, 等. 1993. 棉花人工杂交制种方法的改进[J]. 中国棉花, 20(6): 16-17. (Xing C Z, Jing S R, Yuan Y L, et al.1993. Improvement of artificial hybrid seed production method for cotton[J]. China Cotton, 20(6): 16-17.) [13] 胥华伟, 莫亿伟, 史国安, 等. 2013. OsPIN1a基因在水稻根负向光性中的作用初探[J]. 中国水稻科学, 27(5): 466-472. (Xu H W, Mo Y W, Shi G A, et al.2014. OsPIN1a gene participates in regulating negative phototropism of rice roots[J]. Rice Science. 27(5): 466-472.) [14] 徐晓建. 2019. 外施IAA对棉纤维起始分化的影响机理及其应用研究[D]. 浙江大学, 导师: 陈进红, pp. 31-45. (Xu X J.2019. Study on the mechanism and application of IAA on cotton fiber initiation differentiation[D]. Zhejiang University, Supervisor: Chen J H, pp. 31-45.) [15] Chang Q, Xiu Y B, Rui H, et al.2020. Expression of BpPIN is associated with IAA levels and the formation of lobed leaves in Betula pendula 'Dalecartica'[J]. Forestry Research: English edition, 31(1): 87-97. [16] Friml J.2010. Subcellular trafficking of PIN auxin efflux carriers in auxin transport[J]. European Journal of Cell Biology, 89(2-3): 231-235. [17] Ga L, Weiler L, Guan C, et al.1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J]. Science, 282(5397): 2226-2230. [18] Hu Y, Chen J, Fang L, et al.2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genetics. 51(4): 739-748. [19] Keek P, Skpa P, Libus J, et al.2009. The PIN-FORMED (PIN) protein family of auxin transporters[J]. Genome Biology, 10(12): 1-11. [20] Kerr I, Bennett M.2007. New insight into the biochemical mechanisms regulating auxin transport in plants[J]. Biochemical Journal, 401(3): 613-622. [21] Kleine-Vehn J, Wabnik K, Martiniere A, et al.2011. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane[J]. Molecular Systems Biology, 7(1): 540-541. [22] Petrasek J, Friml J.2009. Auxin transport routes in plant development[J]. Development, 136(16): 2675-2688. [23] Praveen A, Pandey A, Gupta M.2019. Nitric oxide alters nitrogen metabolism and PIN gene expressions by playing protective role in arsenic challenged Brassica juncea L.[J]. Ecotoxicology and Environmental Safety, 176(JUL.): 95-107. [24] Runions A, Smith R, Prusinkiewicz P.2014. Auxin and Its Role in Plant Development || Computational Models of Auxin-Driven Development[M]. Springer, Vienna, pp. 98-102. [25] Shin H S, Cho Y H.2005. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases[J]. Plant Journal, 42(2): 188-200. [26] Tu L L, Zhang X L, Liang S G, et al.2007. Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development[J]. Plant Cell Reports, 26(8): 1309-1320. [27] Wabnik K, Kleine-Vehn J, Govaerts Wet al.2011. Prototype cell-to-cell auxin transport mechanism by intracellular auxin compartmentalization[J]. Trends in Plant Science, 16(9): 468-475. [28] Xu M, Zhu L, Shou H, et al.2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant & Cell Physiology, 46(10): 1674-1681. [29] Zhang Y, Peng H, Yang Z, et al.2017. A genome-scale analysis of the PIN gene family reveals its functions in cotton fiber development[C]. Chinese Society of Agronomy Cotton Branch 2017 Annual Meeting and the ninth Member Representative Conference Papers, 8(941): 461-474. [30] Zhang M, Zeng J Y, Hui Let al.2016. Auxin regulates cotton fiber initiation via ghpin-mediated auxin transport[J]. Plant and Cell Physiology, 58(2): 385-398.