Prokaryotic Expression of FpgMBV1-P4 Gene and Preparation of Its Polyclonal Antibodies
LIU Dong-Wei1, SONG Jia-Qing1, PAN Xin1, YAN Shu-Wei1, LI Ke1, FAN Pei3, GAO Fei1, ZHANG Xiao-Ting1,*, DAI Jun-Li1,*, LI Hong-Lian1,2
1 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; 2 State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China; 3 Colledge of Biology Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract:Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) is a mycovirus found in the hypovirulence Fusarium pseudograminearum strain FC136-2A. Four proteins were encoded in FpgMBV1. Among them, FpgMBV1-P4 composed of 268 amino acids with unknown function. Specific primers were designed and used in reverse transcription PCR (RT-PCR) to amplify the FpgMBV1-P4 gene from the hyphae of the strain FC136-2A in this study. Then a prokaryotic expression vector pGEX4T-FpgMBV1-P4 was constructed and transformed into Escherichia coli BL21(DE3) strain, and the recombinant protein was induced at 25 ℃ with 0.5 mmol/L isopropyl β-D-thiogalactoside (IPTG). Results showed that FpgMBV1-P4 in length of 807 bp was successfully amplified and the fusion protein with a molecular weight of about 60 kD was highly expressed . The purified fusion protein was used to immunize Zealand white rabbit (Lepus sinensis) to obtain antiserum. Indirect ELISA results showed the titer of this antiserum reached 1∶160 000. And the antiserum was used to specifically detect the FpgMBV1-P4 protein at about 36 kD from samples of the hyphae of FC136-2A. These results laid a foundation for the structural and functional analysis of FpgMBV1-P4, which would be meaningful in deciphering the hypovirulent mechanism of FpgMBV1.
刘东伟, 宋嘉庆, 潘鑫, 闫书味, 李轲, 范沛, 高飞, 张晓婷, 代君丽, 李洪连. FpgMBV1-P4基因的原核表达及多克隆抗体制备[J]. 农业生物技术学报, 2022, 30(11): 2246-2254.
LIU Dong-Wei, SONG Jia-Qing, PAN Xin, YAN Shu-Wei, LI Ke, FAN Pei, GAO Fei, ZHANG Xiao-Ting, DAI Jun-Li, LI Hong-Lian. Prokaryotic Expression of FpgMBV1-P4 Gene and Preparation of Its Polyclonal Antibodies. 农业生物技术学报, 2022, 30(11): 2246-2254.
[1] 包广宇, 谷鸿喜, 林道虹, 等. 2002. 原核表达系统中HPV16L1蛋白的表达与纯化[J], 生物医学工程学杂志, 19(002): 280-283. (Bao G Y, Gu H X, Lin D H, et al.2002. Expression and purification of HPV16L1 protein inprokaryotic expression system[J]. Journal of Biomedical Engineering, 19(002): 280-283). [2] 杜新军, 邵红莲, 邵丁丁, 等. 2004. 棉铃虫组织蛋白酶B酶原在大肠杆菌中的表达及纯化[J]. 农业生物技术学报, 12(002): 162-166. (Du X J, Shao H L, Shao D D, et al.2004. Expression and purification of helicoverpa armigera cathepsin b in Escherichia coli[J]. Journal of Agricultural Biotechnology, 12(002): 162-166). [3] 贺小伦, 周海峰, 袁虹霞, 等. 2016. 河南和河北冬小麦区假禾谷镰孢的遗传多样性[J]. 中国农业学报, 49(002): 272-281. (He X L, Zhou H F, Yuan H X, et al.2016. Genetic diversity of winter wheat in Henan and Hebei district of false Fusarium graminearum[J]. Scientia Agricultura Sinica, 49(002): 272-281). [4] 李轲, 刘东伟, 王志芳, 等. 2020. 真菌病毒FpgMBV1中p3基因的原核表达及多克隆抗体的制备[J]. 植物病理学报, 50(5): 567-573. (Li K, Liu D W, Wang Z F, et al. 2020. (Prokaryotic expression of FpgMBV1-P4 and preparation of its polyclonal antibodies[J]. Acta Phytopathologica Sinica, 50(5): 567-573.) [5] 陆宁海, 吴利民, 郎剑锋, 等. 2015. 河南省玉米小斑病菌生理小种鉴定及致病力分化[J]. 湖北农业科学, 54(7), 1603-1606. (Lu N H, Wu L M, Lang J F, et al.2015. Identification of physiological races and pathogenicity differentiation of the pathogen of corn leaf spot in Henan province[J]. Hubei Agriculture Sciences, 2015, 54(7), 1603-1606). [6] 孟程程, 孙晓凤, 张莉, 等. 2019. 山东省小麦茎基腐病的病原鉴定[J].山东农业大学学报-自然科学版, 50(5): 753-757. (Meng C C, Sun X F, Zhang L, et al.2019. Identification of the pathogen of wheat stem rot in Shandong province[J]. Journal of Shandong Agricultural University-Natural Science Edition, 50(5): 753-757). [7] 孙亚玲, 陈立, 孙雨晴, 等. 2017. 洋葱AcPME基因的克隆及序列分析[J] 山东农业科学, 049(006): 7-12. (Sun Y L, Chen L, Sun Y Q, et al.2017. Cloning and sequence analysis of onion AcPME gene[J]. Shandong Agricultural Sciences, 049(006): 7-12). [8] 吴雪琼, 栾翔凌, 熊志红, 等. 2009. SARS-CoV E| M和N蛋白克隆表达及抗原性的研究[J]. 中国现代医学杂志, 19(22): 3378-3385. (Wu X Q, Luan X L, Xiong Z H, et al.2009. SARS-CoVE, M and N protein cloning, expression and antigenicity[J]. China Journal of Modern Medicine, 19(22): 3378-3385). [9] 胥俊峰, 单建华, 赵宁伟, 等. 2007. 大肠杆菌γ-ggt原核表达载体pGEX-4T-1/γ-ggt的构建及其蛋白表达[J].安徽农业科学, 2007(30): 9467-9469. (Xu J F, Shan J H, Zhao N W, et al.2007. Construction of Escherichia coli γ-ggt prokaryotic expression vector pGEX-4T-1/γ-ggt and its protein expression[J]. Journal of Anhui Agricultural Sciences, 2007(30): 9467-9469.) [10] 杨云, 贺小伦, 胡艳峰, 等. 2015. 黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性[J]. 麦类作物学报, 35(3): 339-345. (Yang Y, He X L, Hu Y F, et al.2015.Resistance of main wheat varieties in Huanghuai wheat area to stalk rot caused by Fusarium pseudograminearum[J]. Journal of Triticeae Crops,35(3), 339-345). [11] 张成岗, 李林, 邓美玉, 等. 2002. 大鼠脑红蛋白(NGB)的原核表达、抗体制备及其细胞分布[J]. 中国生物化学与分子生物学报, 18(1): 80-84. (Zhang C G, Li L, Deng MY, et al.2002. Prokaryotic expression, antibody preparation and cell distribution of rat brain globin (NGB)[J]. Chinese Journal of Biochemistry Molecular Biology, 18(1): 80-84). [12] 周海峰. 2014. 黄淮麦区小麦茎基腐病病原鉴定及其致病性研究[D]. 博士学位论文, 河南农业大学, 导师: 李洪连, pp. 30-32 (Zhou H F.2014.Identification and pathogenicity of the pathogen of wheat stem rot in Huanghuai wheat area[D]. Thesis for Ph. D., Henan Agricultural University, Supervisor: Li H L, pp. 30- 32). [13] Almagro Armenteros J J, Tsirigos K D, Sønderby C K, et al.2019. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 37(4): 420-423. [14] Bernhofer M, Dallago C, Karl T, et al.2021. PredictProtein - predicting protein structure and function for 29 years[J]. Nucleic Acids Research, 49(W1): W535-W540. [15] Chakraborty S, Liu C J, Mitter V,et al.2006. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australasian Plant Pathology, 35(6): 643-655. [16] Chiba S, Salaipeth L, Lin Y H,et al.2009. A novel bipartite double-stranded RNA Mycovirus from the white root rot fungus Rosellinia necatrix: Molecular and biological characterization, taxonomic considerations, and potential for biological control[J]. Journal of Virology, 83(24): 12801-12812. [17] Kumar S, Stecher G, Tamura K.2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 33(7): 1870-1874. [18] Li H L, Yuan H X, Fu B, et al.2012. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J]. Plant Disease, 96(7): 1065-1065. [19] Qiu J, Bernhofer M, Heinzinger M,et al.2020. ProNA predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence[J]. Journal of Molecular Biology, 432(7): 2428-2443. [20] Sasaki A, Nakamura H, Suzuki N, et al.2016. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix[J]. Virus Research, 219(7): 73-82. [21] Sato Y K,MiyazakiNK, KanematsuS, et al.2019. ICTV virus taxonomy profile: Megabirnaviridae[J]. The Journal of General Virology, 100(9): 1269-1270. [22] Satoko K A, Takeo S A, Lakha S C, et al.2014. Genome rearrangement of a mycovirus Rosellinia necatrix megabirnavirus 1 affecting its ability to attenuate virulence of the host fungus[J]. Virology, 450-451(1): 308-315. [23] Schlessinger A, Punta M, Yachdav G, et al.2009. Improved disorder prediction by combination of orthogonal approaches[J]. PLOS ONE, 4(2): e4433. [24] Schlessinger A, Yachdav G, Rost B.2006. PROFbval: Predict flexible and rigid residues in proteins[J]. Bioinformatics, 22(7): 891-3. [25] Smiley R W, Patterson L M.1996. Pathogenic fungi associated with Fusarium foot rot of winter wheat in the semiarid Pacific northwest[J]. Plant Disease, 80(8): 944-949. [26] van Sanford D A, MacKown C T.1987. Cultivar differences in nitrogen remobilization during grain fill in soft red winter wheat 1[J]. Crop science, 27(2): 295-300. [27] Walker, John M.2005. The Proteomics Protocols Handbook[J]. Humana Press, 71(6): 571-607. [28] Wang M H, Wang Y, Sun X Z,et al.2015. Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from single-stranded rna virus to double-stranded RNA virus[J]. Journal of Virology, 89(16): 8567-8579. [29] Zhang X T, Gao F, Zhang F, et al.2018. The complete genomic sequence of a novel megabirnavirus from Fusarium pseudograminearum, the causal agent of wheat crown rot[J]. Archives of Virology, 163(11): 3173-3175. [30] Zhou H F, He X L, Wang S, et al.2019. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J]. Environmental Microbiology, 21(8): 2740-2754.