Response of hsp90b1 and hspb1 to Temperature Stress in the Liver of Larimichthys polyactis
CHU Tian-Qi1,2, LIU Feng1,*, CHEN Hong-Lin1, ZHAN Wei1, WANG Meng-Jie1,2, QIN Gao-Chan1,2, LOU Bao1,*, XU Wan-Tu3
1 Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021 China; 2 School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China; 3 Xiangshan Harbor Aquatic Seed Co., Ltd., Ningbo 315700, China
Abstract:Heat shock proteins (HSPs) are closely related to fish response to temperature stress. To investigate the response characteristics of the heat shock proteins family genes, hsp90b1 and hspb1, in Larimichthys polyactis subjected to temperature stress, In this study, full-length CDS of hsp90b1 and hspb1 in L. polyactis was cloned, and detected their spatiotemporal expression characteristics and expression patterns after acute and long-term temperature stress. The full-length CDS sequence of hsp90b1 (GenBank No. OK340652) was 2 406 bp, encoding a predicted 801 amino acid. While the full-length CDS sequence of hspb1 (GenBank No. OK340653) was 609 bp encoding 202 amino acid. Tissue expression analysis results showed that the hsp90b1 gene expression is the highest in the skin, while hspb1 gene expression was the highest in the muscle. As the natural water temperature was 20 ℃ (control group), L. polyactis was treated with acute high (32 ℃) and low (6 ℃) temperature stress. The results showed that the acute temperature stress could induce significant high expression of hsp90b1 in the liver. Differently, hspb1 expressed higher with high temperature and expressed lower with low temperature (P<0.05). During long-term temperature treatments (with 13 ℃ as the control, fish was treated at 6, 8, 16 and 20 ℃, respectively and maintained for 7 d). It was found that the expression of hsp90b1 in the liver of the 4 treatment groups was significantly higher than that in the control group, which temperature was 13 ℃ (P<0.05), while the expression level of the high-temperature group (16 ℃ and 20 ℃) was higher than that in the low-temperature group (6 ℃ and 8 ℃); Unlike hsp90b1, hspb1 still showed the characteristics of high expression at high temperature and low expression at low temperature (P<0.05). The present study indicated that hsp90b1 and hspb1 were significantly differentially expressed in L. polyactis during temperature stress, suggested that hsp90b1 and hspb1 played an important role in the response to temperature stress. The results of this study provide an important foundation for exploring the molecular mechanism of the L. polyactis in response to temperature stress.
[1] 陈全震, 曾江宁, 高爱根, 等. 2004. 鱼类热忍耐温度研究进展[J]. 水产学报, 28(5): 562-567. (Chen Q Z, Zeng J N, Gao A G.et al.2004. Advances in study of temperature of thermal tolerance of fishes[J]. Journal of Fisheries of China, 28(5): 562-567.) [2] 陈睿毅, 楼宝, 詹炜, 等. 2016. 小黄鱼亲鱼驯养及苗种繁育[J]. 科学养鱼, 32(1): 42-43. (Chen R Y, Lou B, Zhan W, et al.2016. Domestication and reproduction of broodstock of small yellow croaker[J]. Scientific Fish Farming, 32(1): 42-43.) [3] 程丽娜, 徐冬冬, 李三磊, 等. 2011. 高温胁迫对不同规格褐牙鲆生长性能的影响[J]. 上海海洋大学学报, 20(3): 368-373. (Cheng L N, Xu D D, Li S L, et al.2011. Effects of high temperature stress and body size on growth performance of olive flounder Paralichthy olivaceus[J]. Journal of Shanghai Ocean University, 20(3): 368-373.) [4] 崔学升, 周朝伟, 李志琼. 2010. 禁食和热应激对齐口裂腹鱼生化指标的试验[J]. 饲料研究, 2: 63-65. (Cui X S, Zhou C W, Li Z Q.2010. Fasting and heat stress test on biochemical indexes of Schizothorax prenanti[J]. Feed Research, 2: 63-65.) [5] 甘明阳, 袁喜, 蒋清, 等. 2015. 急性降温对青鱼幼鱼游泳能力的影响[J]. 三峡大学学报(自然科学版), 37(3): 35-39. (Gan M Y, Yuan X, Jiang Q, et al.2015. Effects of acute temperature declining on swimming performance of juvenile black carp[J]. Journal of China Three Gorges University (Natural Sciences), 37(3): 35-39.) [6] 龚兴国, 于红. 2004. 热休克蛋白60的研究进展[J]. 中国病理生理杂志, 20(11): 2151-2154. (Gong X G, Yu H.2004. Recent advances in heat shock protein 60[J]. Chinese Journal of Pathophysiology, 20(11): 2151-2154.) [7] 郭秀云, 王胜, 吴必文, 等. 2007. 环境温度对水产养殖定量化影响的研究[J]. 安徽农业科学, 35(24): 7498-7499. (Guo X Y, Wang S, Wu B W, et al.2007. Research on the effect of environmental temperatures on quantifying aquaculture[J]. Journal of Anhui Agricultural Sciences, 35(24): 7498-7499.) [8] 黄琳. 2015. 牙鲆免疫相关基因及热休克蛋白基因的转录表达[D]. 博士学位论文, 中国科学院研究生院(海洋研究所), 导师: 莫照兰. pp. 23-24. (Huang L.2015. Transcription expression of immune-related genes and heat shock protein genes of Japanese flounder (Paralichthys olivaceus)[D]. Thesis for Ph.D., The Institute of Oceanology, Chinese Academy of Sciences. Supervisor: Mo Z L. pp: 23-24.) [9] 刘峰, 刘阳阳, 楼宝, 等. 2016. 温度对小黄鱼体内抗氧化酶及消化酶活性的影响[J]. 海洋学报, 38(12): 76-85. (Liu F, Liu Y Y, Lou B, et al.2016. Effect of water temperature on antioxidant and digestive enzymes activities in Larimichthys polyactis[J]. Haiyang Xuebao, 38(12): 76-85.) [10] 刘玲, 陈超, 李炎璐, 等. 2018. 短期温度胁迫对驼背鲈(♀)×鞍带石斑鱼(♂)杂交子代幼鱼抗氧化及消化酶活性的影响[J]. 渔业科学进展, 39(2): 59-66. (Liu L, Chen C, Li Y L, et al.2018. Effects of short-term temperature stress on antioxidant and digestive enzymes of hybrid progeny (Cromileptes altivelis Valenciennes ♀ × Epinephelus lanceolatus ♂)[J]. Progress in Fishery Sciences, 39(2): 59-66.) [11] 龙华. 2005. 温度对鱼类生存的影响[J]. 中山大学学报(自然科学版), S1: 254-257. (Long H.2005. The effect of temperature on fish[J]. Survival Acta Scientiarum Naturalium Universitatis Sunyatseni, S1: 254-257.) [12] 莫伯格. 2005. 动物应激生物学[M]. 中国农业出版社, 北京. pp. 1-12. (Moberg G.P. 2005. Animal Stress Biology[M]. China Agriculture Press.. Beijing. pp. 1-12.) [13] 强俊, 杨弘, 王辉, 等. 2012. 急性温度应激对吉富品系尼罗罗非鱼(Oreochromis niloticus)幼鱼生化指标和肝脏HSP70 mRNA表达的影响[J]. 海洋与湖沼, 43(5): 943-953. (Qiang J, Yang H, Wang H, et al.2012. The effect of acute temperature stress on biochemical indices and expression of liver HSP70 mRNA in gift nile tilapia juveniles (Oreochromis niloticus)[J]. Oceanologia et Limnologia Sinica, 43(5): 943-953.) [14] 覃川杰, 杨川, 陈昌福. 2011. 水温对鱼类免疫活动的影响[J]. 河南师范大学学报(自然科学版), 39(5): 129-133. (Qin C J, Yang C, Chen C F.2011. Effect of environmental temperature on lmmune status of fish[J]. Journal of Henan Normal University (Natural Science Edition), 39(5): 129-133.) [15] 史鲲鹏, 董双林, 周演根, 等. 2018. 不同倍性虹鳟幼鱼对急性温度胁迫的抗氧化响应[J]. 应用生态学报, 29(9): 3102-3110. (Shi K P, Dong S L, Zhou Y G, et al.2018. Antioxidant responses of rainbow trout with different ploidies to acute temperature stress[J]. Chinese Journal of Applied Ecology, 29(9): 3102-3110.) [16] 孙毅, 谢庆平, 楼宝, 等. 2018. 温度对小黄鱼早期生长发育的影响[J]. 浙江海洋大学学报(自然科学版), 139(3): 24-30. (Sun Y, Xie Q P, Lou B, et al.2018. Effect of temperature on early growth stage in little yellow croaker, Larimichthys polyactis[J]. Journal of Zhejiang Ocean University (Natural Science), 139(3): 24-30.) [17] 谭鲁玉, 王玉堃, 唐学玺, 等. 2018. 黄海小黄鱼不同组织中δ15N的分布特征及其生态学意义[J]. 渔业科学进展, 39(3): 30-35. (Tan L Y, Wang Y K, Tang X X, et al.2018. Distribution characteristics of the stable nitrogen isotope in different tissues of small yellow croaker and the ecological significance in the Yellow Sea[J]. Progress in Fishery Sciences, 39(3): 30-35.) [18] 吴丹娜, 陈光曙, 徐承旭. 2020. 全人工养殖小黄鱼即将上市[J]. 水产科技情报, 47(5): 295. (Wu D N, Chen G S, Xu C X.2020. Fully cultivated small yellow croaker will be available soon[J]. Fisheries Science & Technology Information, 47(5): 295.) [19] 杨启莲. 2011. 大黄鱼HSP及caspase家族部分基因对温度胁迫的响应[D]. 硕士学位论文, 集美大学. 导师: 姚翠鸾. pp. 56-67. (Yang Q L.2011. Response characterization of some HSP and caspase genes of large yellow croaker to temperature stress[D]. Thesis for M. S., JiMei University, Supervisor: Yao C L. pp. 56-67.) [20] 周建国, 吕柏宁, 孟刚, 等. 2009. 热应激下热休克蛋白70对细胞保护作用研究进展[J]. 西南国防医药, 5: 554-556. (Zhou J G, Lv B N, Meng G, et al.2009. Research progress of heat shock protein 70 on cell protection under heat stress[J]. Medical Journal of National Defending Forces in Southwest China, 5: 554-556.) [21] Acunzo J, Katsogiannou M, Rocchi P.2012. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death[J]. International Journal of Biochemistry & Cell Biology, 44(10): 1622-1631. [22] Chen X Y, Niu J J, Jiang R S, et al.2014. Expression profile of heat shock protein 70 in indigenous Huainan partridge chicken exposed to low temperature[J]. Italian Journal of Animal Science, 13: 2960. [23] Chu T Q, Liu F, Qin G C, et al.2020. Transcriptome analysis of the Larimichthys polyactis under heat and cold stress[J]. Cryobiology, 96: 175-183. [24] Fan Q D, Mao H L, Wu C X, et al.2014. ATF4 (activating transcription factor 4) from grass carp (Ctenopharyngodon idella) modulates the transcription initiation of GRP78 and GRP94 in CIK cells[J]. Fish and Shellfish Immunology, 38(1): 140-148. [25] Habich C, Sell H.2015. Heat shock proteins in obesity: Links to cardiovascular disease[J]. Hormone Molecular Biology and Clinical Investigation, 21(2): 117-124. [26] Haslbeck M, Franzmann T, Weinfurtner D, et al.2005. Some like it hot: The structure and function of small heat shock proteins[J]. Nature Structural & Molecular Biology, 12: 842-846. [27] Leroux M R, Melki R, Gordon B, et al.1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides[J]. Journal of Biological Chemistry, 272(39): 46-56. [28] Li P P, Zhang M H, Zou Y, et al.2018. Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes[J]. International Journal of Biological Macromolecules, 106: 1250-1257. [29] Liu B, Li Z.2008. Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin[J]. Blood, 112(4): 1223-1230. [30] Liu F, Chu T, Wang M, et al.2020. Transcriptome analyses provide the first insight into the molecular basis of cold tolerance in Larimichthys polyactis[J]. Journal of Comparative Physiology B, 190: 27-34. [31] Mao L, Bryantsev A L, Chechenova M B, Shelden E A.2005. Cloning, characterization, and heat stress-induced redistribution of a protein homologous to human hsp27 in the zebrafish Danio rerio[J]. Experimental Cell Research, 306: 230-241. [32] Marzec M, Eletto D, Argon Y.2012. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum[J]. Biochimica et Biophysica Acta, 1823(3): 774-787. [33] Ojima N.2007. Rainbow trout hspb1 (hsp27): Identification of two mRNA splice variants that show predominant expression in muscle tissues[J]. Comparative biochemistry and physiology, Part B. Biochemistry & molecular biology, 148: 277-285. [34] Paul C, Simon S, Gibert B, et al.2010. Dynamic processes that reflect anti-apoptotic strategies set up by HspB1 (Hsp27)[J]. Experimental Cell Research, 316(9): 1535-1552. [35] Pilch W, Wyrostek J, Major P, et al.2020. The effect of whole-body cryostimulation on body composition and leukocyte expression of HSPA1A, HSPB1, and CRP in obese men[J]. Cryobiology, 94: 100-106. [36] Samali A, Robertson J D, Peterson E, et al.2001. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli[J]. Cell Stress & Chaperones, 6(1): 49-58. [37] Smith C M, Ryan P J, Hosken I T, et al.2011. Relaxin-3 systems in the brain-the first 10 years[J]. Journal of Chemical Neuroanatomy, 42: 262-275. [38] Sreedhar A S, Csermely P.2004. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: A comprehensive review[J]. Pharmacology & Therapeutics, 101(3): 227-257. [39] Srivastava P.2002a. Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses[J]. Annual Review of Immunology, 20: 395-425. [40] Srivastava P.2002b. Roles of heat-shock proteins in innate and adaptive immunity[J]. Nature Reviews Immunology, 2(3): 185-194. [41] Wanderling S, Simen B B, Ostrovsky O, et al.2007. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion[J]. Molecular Biology of the Cell, 18(10): 3764-3775. [42] Yang Q L, Yao C L, Wang Z Y.2012. Acute temperature and cadmium stress response characterization of small heat shock protein 27 in large yellow croaker, Larimichthys crocea[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2): 190-197. [43] Yeyati P L, Heyningen V V.2008. Incapacitating the evolutionary capacitor: Hsp90 modulation of disease[J]. Current Opinion in Genetics & Development, 18(3): 264-272. [44] Yucel M, Kucuk A, Bayraktar A C, et al.2013. Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in bladder ischemia-reperfusion injury in rats[J]. Molecular Biology Reports, 40(10): 5733-5740.