Abstract:Chinese cabbage (Brassica rapa ssp. pekinensis) is native to China and belongs to the crucifer family Brassica genus biennial plant. It is a vegetable crop widely cultivated in our country. In this study, a genetically stable yellow cotyledon pure line (19YC-2) and normal green cotyledon near isogenic line (19GC-2) and the F1, F2 populations by hybridizing with 19YC-2 and 19GC-2 were used as materials, The genetic analysis and gene mapping of yellow cotyledon mutant in Chinese cabbage were carried out. Phenotypic observation showed that the cotyledon phenotype of F1 plants was normal green as 19GC-2, and the number of green cotyledon plants to yellow cotyledon plants in F2 population was conformed to 3∶1 proportion, which indicated that yellow cotyledon mutation was a quality trait controlled by one single recessive nuclear gene. The parental polymorphic SSR primers were further screened by bulked segregant analysis (BSA) method and the gene mapping of yellow cotyledon was made. The yellow cotyledon gene was located on the A06 linkage group of Chinese cabbage with two nearest flanking markers SSR280-23 and SSR280-42, their genetic distances are 0.04 cM and 0.96 cM, respectively, and their interval physical distance was 83.9 kb. Through genetic analysis and gene mapping of the yellow cotyledon mutants of Chinese cabbage, this study lays a foundation for the cloning and molecular mechanism of Brassica rapa yellow cotyledon (Bryc).
[1] 郭明, 张贺, 李景富. 2010. 番茄叶色黄化突变体的遗传分析及SSR分子标记[J]. 中国蔬菜, 1(14): 31-35. (Guo M, Zhang H, Li J F.2010. Genetic analysis and SSR molecule marker on tomato yellow leaf mutant[J]. China Vegetables, 1(14): 31-35.) [2] 姜鑫. 2019. 大白菜黄化突变体lcm4 生理特性分析及突变基因定位[D]. 博士学位论文, 沈阳农业大学, 导师: 刘志勇, pp.17. (Jiang X.2019. Physiological characteristics analysis of chlorosis mutant lcm4 and mapping of mutant gene in Chinese cabbage[D]. Thesis for Ph.D., Shenyang Agricultural University, Supervisor: Liu Z Y, pp. 17.) [3] 李想. 2019. 大白菜黄化突变基因Brpem1精细定位及表达特性分析[D]. 博士学位论文, 沈阳农业大学, 导师: 冯辉. pp.11-15 (Li X.2019. Fine mapping and expression characteristics of the etiolated mutant gene Brpem1 in Chinese cabbage [D]. Thesis for Ph.D., Shenyang Agricultural University, Supervisor: Feng H, pp.11-15). [4] 李晴晴. 2019. 大白菜金黄叶突变体lcm1的生理特性分析与突变基因定位[D]. 硕士学位论文, 沈阳农业大学, 导师: 刘志勇. pp.19-24 (Li Q Q.2019. Physiological characterization of golden leaf mutant lcm1 in Chinese cabbage (Brassica rapa L.ssp.pekinensis) and mutation gene mapping[D]. Thesis for M.S., Shenyang Agricultural University, Supervisor Liu Z Y, pp.19-24.) [5] 吕明. 2010. 芥菜型油菜黄化突变体L638-y叶片缺绿的生化机制探讨[D]. 硕士学位论文, 西北农林科技大学. 导师: 赵惠贤. pp.11-19. (Lv M.2010. Investigation on biochemical mechanism of leaf chlorosis in a chlorophyll-deficient mutant L638-Y of Brassica juncea L[D]. Thesis for M.S., Northwest Sci-Tech University of Agriculture and Forestry, Supervisor: Zhao H X, pp.11-19.) [6] 王备芳, 陈玉宇, 张迎信, 等. 2018. 水稻早衰突变体es5的鉴定及其突变基因的精细定位[J]. 中国农业科学 51: 613-625. (Wang B F, Chen Y Y, Zhang Y X, et al.2018. Identification and fine mapping of an early senescent leaf mutant es5 in Oryza sativa L.scientia[J]. Agricultura Sinica, 51: 613-625.) [7] 王飞, 段世名, 李彤, 等. 2018. 玉米叶色突变体遗传分析及基因定位[J].植物遗传资源学报, 19(06): 1205-1209. (Wang F, Duan S M, Li T.et al.2018. Fine mapping and candidate gene analysis of leaf color mutant in maize[J]. Journal of plant genetic resources, 19(06): 1205-1209.) [8] 杨冲, 张扬勇, 方智远, 等. 2014. 甘蓝叶色黄化突变体YL-1的光合生理特性及其叶绿体的超微结构[J]. 园艺学报 41: 1133-1144. (Yang C, Zhang Y Y, Fang Z Y, et al.2014. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage[J]. Acta Horticulture Sinica, 41: 1133-1144.) [9] 张琨, 刘志勇, 单晓菲, 等. 2017.青梗菜黄化突变体pylm遗传特性分析[J]. 沈阳农业大学学报, 48: 1-8. (Zhang K, Liu Z Y, Shan X F, et al.2017. Genetic analysis of a yellow mutant pylm in Pak-choi[J]. Journal of Shenyang Agricultural University, 48: 1-8.) [10] 张向前, 刘芳, 朱海涛, 等. 2009. 水稻Ds插入淡绿叶突变体的鉴定和遗传分析[J]. 遗传, 31: 947-952. (Zhang X Q, Liu F, Zhu H T, et al.2009. Identification and genetic analysis of pale-green mutant caused by Ds insertion in rice[J]. Genetic, 31: 947-952.) [11] 张泽斌, 邓文辉, 欧阳文秋, 等. 2009. 黄化油菜Cr3529的光合特性和叶绿素荧光分析[J]. 四川大学学报(自然科学版), 46(04): 1181-1187. (Zhang Z B, Deng W H, Ou Yang W Q, et al.2009. Photosynthetic capabilities and chlorophyll fluorescence of chlorophyll reduced seedling mutant Cr3529, Brassici napus L[J]. Journal of Sichuan University (Natural Science Edition), 46(04): 1181-1187. ) [12] 赵天翔. 2020. 白菜黄化突变基因lcm136的定位[D]. 硕士学位论文, 沈阳农业大学, 导师: 刘志勇. pp.5-8. (Zhao T X.2020. Mapping of yellow leaf mutant gene lcm136 in Chinese cabbage[D]. Thesis for M.S., Shenyang Agricultural University, Supervisor: Liu Z Y, pp.5-8.) [13] Apitz J, Schmied J, Lehmann M J, et al.2014. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level[J]. Plant and Cell Physiology, 55(3): 645-657. [14] Chen H, Cheng Z, Ma X, et al.2013. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice[J]. Plant Cell Reports, 32(12):1855-1867. [15] Chen L, Lin C H, Kelkar S M, et al.2008. Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing[J]. Plant Science, 174(1): 25-31. [16] Guo N, Wu J, Zheng S, et al.2015. Anthocyanin profile characterization and quantitative trait locus mapping in zicaitai (Brassica rapa L. ssp. chinensis var. purpurea)[J]. Molecular Breeding, 35(5): 113. [17] Gutierrez-Nava MDLL, Gillmor C S, Jimenez L F, et al.2004. Chloroplast biogenesis genes act cell and noncell autonomously in early chloroplast development[J]. Plant Physiology, 135(1): 471-482. [18] Han F Q, Yang C, Fang Z Y, et al.2015. Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea[J]. Molecular Breeding, 35(8): 1-8. [19] Huang S, Liu Z, Yao R, et al.2016. Candidate gene prediction for a petal degeneration mutant, pdm, of the Chinese cabbage (Brassica campestris ssp. pekinensis) by using fine mapping and transcriptome analysis[J]. Molecular Breeding, 36(3) :1-10. [20] Kobayashi K, Masuda T.2016. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana[J]. Frontiers in Plant Science, 7: 1811. [21] Lee G C, Chepyshko H, Chen H H, et al.2010. Genes and biochemical characterization of three novel chlorophyllase isozymes from Brassica oleracea[J]. Journal of Agricultural and Food Chemistry, 58(15): 8651-8657. [22] Lee S, Lee S C, Dong H B, et al.2014. Association of molecular markers derived from the BrCRISTO1 gene with prolycopene-enriched orange-colored leaves in Brassica rapa[J]. Theoretical & Applied Genetics 127(1): 179-191. [23] Liu S, Liu Y, Yang X, et al.2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nature Communications, 5(5): 3930. [24] Liu W, Fu Y, Hu G, et al.2007. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.)[J]. Planta, 226(3): 785-795. [25] Michelmore R W, Paran I, Kesseli R V.1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the USA, 88: 9828-9832. [26] Murray H G, Thompson W F.1980. Rapid isolation of high molecular weight DNA[J]. Nucleic Acid Research 8: 4321-4325. [27] Nagai S, Masuda T.2007. Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis[J]. Plant Physiology, 144(2): 1039-1051. [28] Nagata N, Tanaka R, Satoh S, et al.2005. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species[J]. Plant Cell, 17(1): 233-240. [29] Nakanishi H, Nozue H, Suzuki K, et al.2005. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls[J]. Plant and Cell Physiology, 46(3): 467-473. [30] Qin G, Gu H, Ma L, et al.2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Research,17(5):471-482. [31] Teng Y S, Su Y S, Chen L J, et al.2006. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane[J]. Plant Cell, 18(9): 2247-2257. [32] Ujwal M L, Mccormac A C, Goulding A, et al.2002. Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: Expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling[J]. Plant Molecular Biology, 50(1): 83-91. [33] Wang W, Zhang D, Yu S, et al.2014. Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa[J]. Euphytica, 199(3): 293-302. [34] Wang X, Wang H, Wang J, et al.2011. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics, 43(10): 1035-1039. [35] Wu J, Zhao J, Qin M, et al.2016. Genetic analysis and primary mapping of the purple gene in purple heading Chinese cabbage[J]. Acta Horticulturae Sinica, 43(6): 1079-1088. [36] Yu Q B, Jiang Y, Chong K, et al.2009. AtECB2, a pentatricopeptide repeat protein, is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana. Plant Journal, 59(6):1011-1023. [37] Zhang H, Li J, Yoo J H, et al.2006. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology, 62(3):325-337. [38] Zhang J, Li H, Zhang M, et al.2013. Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Molecular Breeding, 32(4): 799-805. [39] Zhang S, Li P, Qian W, et al.2016. Mapping and expression profiling reveal an inserted fragment from purple mustard involved anthocyanin accumulation in Chinese cabbage[J]. Euphytica, 212(1): 1-13. [40] Zhu L, Zeng X, Chen Y, et al.2014. Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus[J]. Molecular Breeding, 34: 603-614.