Genetic Analysis and Gene Mapping of Leaf Number of Flue-cured Tobacco (Nicotiana tabacum) Variety 'Jiucaiping 2'
LIANG Ting1, QUE Yuan-Hui2, YU Qi-Wei3, JIA Rong-Li2, ZHOU Guang2, GUO Kai-Yang2, HUANG Ying2, LIU Ren-Xiang2,*
1 College of Agriculture, Guizhou University/Key Laboratory of Tobacco Quality Research of Guizhou Province, Guiyang 550025, China;
2 College of Tobacco, Guizhou University/Key Laboratory of Tobacco Quality Research of Guizhou Province, Guiyang 550025, China;
3 Bijie City Company of Guizhou Tobacco Company, Bijie 551700, China
Abstract:Leaf number is one of the important factors affecting the yield of flue-cured tobacco (Nicotiana tabacum). To improve the efficiency of leaf number genetic improvement, this studying took the flue-cured tobacco variety 'NC82' with few leaves and the flue-cured tobacco variety 'Jiucaiping 2' with many leaves as the parents, constructed F1 and F2 genetic populations, and conducted genetic analysis on the leaf number of 'Jiucaiping 2'. Bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) and kompetitive allele-specific PCR (KASP) were used to map the leaf numbers of 'Jiucaiping 2'. The results showed that the number of leaves of the flue-cured tobacco variety 'Jiucaiping 2' was a quantitative trait mainly controlled by additive effect genes. At the same time, it was regulated by genes with partial recessive relationships, and the number of leaves was partially dominant. BSA-seq technology was used for initial mapping, combined with the Δ(SNP-index) locus and euclidean distance (ED) locus association analysis obtained by sequencing, the candidate range of leaf number was located in the 6.96 Mb range of chromosome 9. According to the SNP genotypes obtained by resequencing, KASP markers were developed in the candidate region to detect F2 individual genotypes, and the candidate gene of leaf number was further reduced to the 1.92 Mb region, which contained 37 genes. Sequence analysis and functional prediction of genes within this region indicated 8 key genes controlling leaf number traits of 'Jiucaiping 2'. This study provides basic data for further clarifying key genes regulating leaf number of flue-cured tobacco in 'Jiucaiping 2', improving yield breeding efficiency of flue-cured tobacco, and revealing the molecular mechanism of leaf number formation of flue-cured tobacco.
[1] 杜启迪, 郭会君, 熊宏春, 等. 2022. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 48(08): 1905-1913.
(Du Q D, Guo H J, Xiong H C, et al.2022. Gene mapping of apical spikelet degeneration mutant asd1 in wheat[J]. Acta Agronomica Sinica, 48(08): 1905-1913.)
[2] 付美玉, 熊宏春, 周春云, 等. 2022. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 48(03): 580-589.
(Fu M Y, Xiong H C, Zhou C Y, et al.2022. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene[J]. Acta Agronomica Sinica, 48(03): 580-589.)
[3] 苟艳丽, 张乐, 郭欢, 等. 2020.植物AP2/ERF类转录因子研究进展[J]. 草业科学, 37(06): 1150-1159.
(Gou Y L, Zhang L, Guo H, et al.2020. Research progress on the AP2/ERF transcription factor in plants[J]. Pratacultural Science, 37(06): 1150-1159.)
[4] 黄鹏, 徐庆国. 2016. 不同烤烟品种农艺性状与经济性状的差异研究[J]. 作物研究, 30(02): 127-131.
(Huang P, Xu Q G.2016. The differences of agronomic and economic characters in different flue-cured tobacco cultivars[J]. Crop Research, 30(02): 127-131.)
[5] 李荣华, 夏岩石, 刘顺枝, 等. 2009. 改进的CTAB提取植物DNA方法[J]. 实验室研究与探索, 28(09): 14-16.
(Li R H, Xia Y S, Liu S Z, et al.2009. CTAB-improved method of DNA extraction in plant[J]. Research and Exploration in Laboratory, 28(09): 14-16.)
[6] 李震, 张清壮, 许石剑, 等. 2021. 土壤耕层重构对烤烟农艺性状和根际土壤微生物多样性的影响[J]. 云南农业大学学报(自然科学), 36(04): 727-733.
(Li Z, Zhang Q Z, Xu S J, et al.2021. Effect of soil tilth layer reconstruction on the flue-cured tobacco agronomic character and rhizosphere soil microbial diversity[J]. Journal of Yunnan Agricultural University (Natural Science), 36(04): 727-733.)
[7] 刘鹍鹏, 杨正权, 朱溥, 等. 2020. 水肥一体化管理对烤烟农艺性状及经济效益的影响[J]. 江苏农业科学, 48(08): 94-102.
(Liu K P, Yang Z Q, Zhu B, et al.2020. Effects of integrated management of water and fertilizer on agronomic characters and economic benefits of flue-cured tobacco[J]. Jiangsu Agricultural Sciences, 48(08): 94-102.)
[8] 刘鹏飞, 周富亮, 梁思维, 等. 2020. 甜玉米茎秆强度性状的主基因+多基因遗传分析[J]. 西北农林科技大学学报(自然科学版), 48(09): 64-72.
(Liu P F, Zhou F L, Liang S W, et al.2020. Mixed major genes and polygenes inheritance analyses for stem strength traits of sweet corn[J]. Journal of Northwest A&F University (Natural Science Edition), 48(09): 64-72.)
[9] 潘旭, 陈锦, 杨永吉, 等. 2017. 7个烤烟品种在盘县烟区适应性研究[J]. 江西农业学报, 29(10): 78-82.
(Pan X, Chen J, Yang Y J, et al.2017. Research on adaptability of seven flue-cured tobacco varieties in Panxian county[J]. Acta Agriculturae Jiangxi, 29(10): 78-82.)
[10] 齐联联, 宿强, 张珂. 2022. SOC1调控植物开花时间的分子机制[J]. 草业科学, 39(01): 149-160.
(Qi L L, Su Q, Zhang K.2022. Molecular mechanism of flowering time regulate by SOC1[J]. Pratacultural Science, 39(01): 149-160.)
[11] 童治军, 方敦煌, 陈学军, 等. 2020. 6个烟草重要产量相关性状的遗传分析[J]. 中国烟草学报, 26(05): 72-81.
(Tong Z J, Fang D H, Chen X J, et al.2020. Genetic analysis of six important yield-related traits in tobacco (Nicotiana tabacum L.)[J]. Acta Tabacaria Sinica, 26(05): 72-81.)
[12] 王莹, 穆艳霞, 王锦. 2021. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 33(06): 1149-1158.
(Wang Y, Mu Y X, Wang J.2021. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 33(06): 1149-1158.)
[13] 吴兴富, 焦芳婵, 陈学军, 等. 2021. 烟草主要农艺性状的主基因+多基因遗传分析[J]. 分子植物育种, 19(19): 6438-6447.
(Wu X F, Jiao F C, Chen X J, et al.2021. Genetic analysis of main agronomic traits in tobacco (Nicotiana tabacum L.) by mixture model of major genes and polygenes[J].Molecular Plant Breeding, 19(19): 6438-6447.)
[14] 杨小凤, 李小蒙, 廖万金. 2021. 植物开花时间的遗传调控通路研究进展[J]. 生物多样性, 29(06): 825-842.
(Yang X F, Li X M, Liao W J.2021. Advances in the genetic regulating pathways of plant flowering time[J]. Biodiversity Science, 29(06): 825-842.)
[15] 张兴伟, 王志德, 任民, 等. 2012. 烤烟几个重要植物学性状的遗传分析[J]. 中国烟草科学, 33(05): 1-8.
(Zhang X W, Wang Z D, Ren M, et al.2012. Genetic analysis of several important botanic traits in flue-cured tobacco[J]. Chinese Tobacco Science, 33(05): 1-8.)
[16] 赵鹏, 王道龙. 2009. 拟南芥中磷脂酶Dγ2的低温信号转导作用途径分析[J]. 基因组学与应用生物学, 28(06): 1117-1122.
(Zhao P, Wang D L.2009. Signal transduction pathway of Arabidopsis phospholipase Dγ2 in the low temperature[J]. Genomics and Applied Biology, 28(06): 1117-1122.)
[17] Andrés F, Porri A, Torti S, et al.2014. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot ape to regulate the floral transition[J]. Proceedings of the National Academy of Sciences of the USA, 111(26): 2760-2769.
[18] Bouche F, Lobet G, Tocquin P, et al.2016. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana[J]. Nucleic Acids Research, 44(D1): 1167-1171.
[19] Dong Z, Chen L, Li Z, et al.2020. Identification and molecular mapping of the semi-dwarf locus (sdf-1) in soybean by SLAF-seq method[J]. Euphytica: International Journal of Plant Breeding, 216(3): 174-178.
[20] He R, Li X, Zhong M, et al.2017. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis[J]. Plant Journal, 91(5): 788-801.
[21] Kassa S, Raman B, Sarah H, et al.2014. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): Overview of the technology and its application in crop improvement[J]. Molecular Breeding, 33(1): 1-14.
[22] Li C, Ling F, Su G, et al.2020. Location and mapping of the NCLB resistance genes in maize by bulked segregant analysis (BSA) using whole genome re-sequencing[J]. Molecular Breeding: New Strategies in Plant Improvement, 40(10): 645-649.
[23] McKenna A, Hanna M, Banks E, et al.2010. The genome analysis toolkit: A MapReduce framework for analyzing next generation DNA sequencing data[J]. Genome Research, 20(9): 1297-1303.
[24] Robinson H F, Mann T J, Comstock R E.1954. An analysis of quantitative variability in Nicotiana tabacum[J]. Heredity, 8(3): 365-376.
[25] Wu J H, Wang Q L, Xu L S, et al.2018. Combining single nucleotide polymorphism genotyping array with bulked segregant analysis to map a gene controlling adult plant resistance to stripe rust in wheat line 03031-1-5 H62[J]. Phytopathology, 108(1): 103-113.