Identification of MYB-related Subfamily Genes in Cajanus cajan and Functional Analysis of CcMYB-R48 Under Drought Stress
ZHANG Xiu-Qi1, DONG Bi-Ying1, SONG Zhi-Hua1, DU Ting-Ting1, LI Na1, XUE Jing-Yi1, CAO Hong-Yan1, WANG Tian-Yi1, SONG Yang-Bo3, MENG Dong1,2, YANG Qing1,2,*
1 The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; 2 Institute of Tree Development and Gene Editing, Beijing Forestry University, Beijing 100083, China; 3 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
Abstract:Cajanus cajan is a medicinal and dietary woody legume with rich active substances and high economic value. Abiotic and biotic stresses, including drought and diseases, are important factors in the reduction of yield and quality of C. cajan; therefore, mining key C. cajan resistance genes and analyzing their functions are the focus of C. cajan breeding research. As an important member of the MYB (v-myb avian myeloblastosis viral) family of transcription factors, MYB-related (MYB-R) subfamily genes are thought to play an important role in adversity stress. In this study, 48 CcMYB-R (CcMYB-related) family genes (CcMYB-R1~CcMYB-R48) containing conserved structural domains of the MYB-R subfamily were screened by bioinformatic methods using Arabidopsis thaliana MYB-R subfamily genes for sequence alignment in the C. cajan genome. Analysis of transcriptome data revealed that CcMYB-R48 was significantly up-regulated and highly expressed under abscisic acid (ABA), Methyl Jasmonate (MeJA) stress treatments, suggested that it might be play an important function in stress response and hormone induction in C. cajan. Cloning and analysis of the CcMYB-R48 revealed that it had a typical MYB functional domain with high homology to Arabidopsis thaliana AT1G19000 and AT1G74840. The semi-quantitative RT-PCR (SqRT-PCR) revealed that CcMYB-R48 was significantly up-regulated in expression under both 6 and 12 h of drought stress, whereas no difference was observed under 6 and 12 h of high-temperature stress, suggested its possible involved in drought resistance in C. cajan. CcMYB-R48 overexpression vector was constructed and overexpressed CcMYB-R48 in C. cajan plants were established using the C. cajan instantaneous conversion system. The results showed that the overexpression plants had lower mortality of 19.44% under drought conditions, and their electrical conductivity, malondialdehyde (MDA) content and peroxidase (POD) content were significantly lower than those of the control plants, indicated that CcMYB-R48 could enhance the drought resistance of C. cajan. This study is important to further investigate the CcMYB-R subfamily genes of C. cajan and their drought resistance mechanism and to carry out molecular resistance breeding work.
张修齐, 董碧莹, 宋治华, 杜婷婷, 李娜, 薛婧怡, 曹红燕, 王天翼, 宋洋波, 孟冬, 杨清. 木豆MYB-related亚家族基因鉴定及干旱胁迫下CcMYB-R48的功能解析[J]. 农业生物技术学报, 2022, 30(9): 1698-1712.
ZHANG Xiu-Qi, DONG Bi-Ying, SONG Zhi-Hua, DU Ting-Ting, LI Na, XUE Jing-Yi, CAO Hong-Yan, WANG Tian-Yi, SONG Yang-Bo, MENG Dong, YANG Qing. Identification of MYB-related Subfamily Genes in Cajanus cajan and Functional Analysis of CcMYB-R48 Under Drought Stress. 农业生物技术学报, 2022, 30(9): 1698-1712.
[1] 蔡佳仲, 戴湾, 张嫩玲. 2020. 木豆化学成分和药理活性研究进展[J]. 天然产物研究与开发, 32(3): 515-524, 506. (Cai J Z, Dai W, Zhang N L. 2020. Advance on chemical constituents and pharmacological activities of Cajanus cajan, 32(3): 515-524, 506.) [2] 陈超. 2014. 喀斯特地区饲用灌木抗旱抗寒性的生理生态学机制研究[D]. 博士学位论文, 中国农业大学, 导师: 王堃, pp. 3-4. (Chen C.2014. Ecophysiological mechanisms of forage shrubs resistant to drought & cold in karst areas[D]. Thesis for Ph.D., China Agricultural University, Suppervisor: Wang K, pp. 3-4.) [3] 陈静. 2017. 番茄SlMYB1R-1基因的克隆和功能研究[D]. 硕士学位论文, 重庆大学, 导师: 李正国, pp. 10-39. (Chen J.2017. Cloning and functional analysis of SlMYB1R-1 gene in tomato[D]. Thesis for M.S., Chongqing University, Suppervisor: Li Z G, pp. 10-39.) [4] 陈清, 汤浩茹, 董晓莉, 等. 2009. 植物Myb转录因子的研究进展[J]. 基因组学与应用生物学, 28(2): 365-372. (Chen Q, Tang H R, Dong X L, et al.2009. Progress in the study of plant MYB transcription factors[J]. Genomics and Applied Biology, 28(2): 365-372.) [5] 董碧莹. 2019. 木豆MATE基因抗金属胁迫作用解析[D]. 硕士学位论文, 北京林业大学, 导师: 付玉杰, pp. 1-10. (Dong B Y, 2019. Functional analysis of MATE gene anti-metal stress in Cajanus cajan[D]. Thesis for M.S., Beijing Forestry University. Supervisor: Fu Y J, pp. 1-10) [6] 冯盼盼, 陈鹏, 洪文杰, 等. 2016. 拟南芥MYB转录因子家族研究进展[J]. 生命科学研究, 20(6): 555-560. (Feng P P, Chen P, Hong W J, et al.2016. Research progress of MYB transcription factor family in Arabidopsis thaliana[J]. Life Science Research. 20(6): 555-560.) [7] 洪震, 练发良, 刘术新, 等. 2016. 3种乡土园林地被植物对干旱胁迫的生理响应[J]. 浙江农林大学学报, 33(4): 636-642. (Hong Z, Lian F L, Liu S X, et al.2016. Physiological response of three native garden ground cover plant seedlings to increasing drought stress[J]. Journal of Zhejiang A&F University, 33(4): 636-642.) [8] 纪中华, 杨艳鲜, 拜得珍, 等. 2007. 木豆在干热河谷退化山地的生态适应性研究[J]. 干旱地区农业研究, 25(03): 158-162. (Ji Z H, Yang Y X, Bai D Z, et al.2007. The study on the ecological adaptability of Cajanus cajan (L.) Millspaugh in the degraded mountain land of the dry-hot valley[J]. Agricultural Research in the Arid Areas, 25(03): 158-162.) [9] 井大炜, 邢尚军, 杜振宇, 等. 2013. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 24(07): 1809-1816. (Jing D W, Xing S J, Du Z Y, et al.2013. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 24(07): 1809-1816.) [10] 李航航. 2020. 木豆ABCG转运蛋白抵御非生物胁迫的作用机制研究[D]. 硕士学位论文, 北京林业大学, 导师: 付玉杰, pp. 1-4. (Li H H.2020. Study on the mechanism of ABCG transporter against abiotic stress in Cajanus cajan[D]. Thesis for M.S., Beijing Forestry University., Suppervisor: Fu Y J, pp. 1-4.) [11] 李合生. 2000. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, pp. 164-169. (Li H S.2000. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Higher Education Press, Beijing, China, pp. 164-169.) [12] 彭浩, 王晓强, 赵强, 等. 2015. 水杨酸与脱落酸对干旱胁迫下玉米种子萌发的影响[J]. 济宁学院学报, 36(03): 72-77. (Peng H, Wang X Q, Zhao Q, et al.2015. Effects on germination of maize seed under drought stress with salicy acid and abscisic acid[J]. Journal of Jining University, 36(03): 72-77.) [13] 唐军, 王文强, 黄春琼, 等. 2013. 木豆育种及分子生物学研究进展[J]. 热带农业科学, 33(08): 36-41. (Tang J, Wang W Q, Huang C Q, et al.2013. Advances in breeding and molecular biology research of pigeon pea [Cajanus cajan (L.) Millsp.][J]. Chinese Journal of Tropical Agriculture, 33(08): 36-41.) [14] 王爽, 赵雁. 2022. 外源ABA对干旱下4种园林地被植物生长及生理特征的影响[J]. 现代园艺, 45(01): 10-13. (Wang S, Zhao Y.2022. Effects of exogenous ABA on growth and physiological characteristics of four garden ground cover plants under drought[J]. Contemporary Horticulture, 45(01): 10-13.) [15] 张鹏钰, 付家旭, 仇晓, 等. 2022. 玉米干旱-复水处理差异表达MYB-related基因的鉴定与分析[J]. 农业生物技术学报, 30(02): 222-235. (Zhang P Y, Fu J X, Qiu X, et al.2022. Identification and analysis of differentially expressed MYB-related genes in maize (Zea mays) under drought stress and rewatering[J]. Journal of Agricultural Biotechnology, 30(02): 222-235.) [16] 周文楠, 郭志鹏, 牛军鹏, 等. 2019. 外源茉莉酸甲酯对紫花苜蓿尖孢镰刀菌根腐病抗病性的作用[J]. 植物病理学报, 49(03): 379-390. (Zhou W N, Guo Z P, Niu J Pet al.2019. Effect of methyl jasmonate on resistance of alfalfa root rot caused by Fusarium oxysporum[J]. Acta Phytopathologica Sinica, 49(03): 379-390.) [17] Anjum S A, Farooq M, Xie X, et al.2012. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought[J]. Scientia Horticulturae, 140: 66-73. [18] Apel K, Hirt H.2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 55(1): 373-399. [19] Aslam M M, Rashid M A R, Siddiqui M A, et al.2022. Recent insights into signaling responses to cope drought stress in rice[J]. Rice Science, 29(2): 105-117. [20] Baldoni E, Genga A, Cominelli E.2015. Plant MYB transcription factors: Their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 16(7): 15811-15851. [21] Bian S M, Jin D H, Sun G Q, et al.2020. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses[J]. Gene, 753: 144803. [22] Cao Z H, Zhang S Z, Wang R K, et al.2013. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants[J]. PLOS ONE, 8(7) e69955. [23] Carvalho M.2008. Drought stress and reactive oxygen species: Production, scavenging and signaling[J]. Plant Signaling & Behavior, 3(3): 156-165. [24] Cho J S, Nguyen V P, Jeon H W, et al.2016. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar[J]. Tree Physiology, 36(9): 1162-1176. [25] Cominelli E, Sala T, Calvi D, et al.2010. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability[J]. The Plant Journal, 53(1): 53-64. [26] Dong T X, Cai K Z, Zhang J X, et al.2007. The physiological roles of methyl jasmonate (MeJA) in drought resistance of rice seedlings[J]. Ecology and Environment, 16(4): 1261-1265. [27] Dossa K, Mmadi M A, Zhou R, et al.2019. Ectopic expression of the sesame MYB transcription factor SiMYB75 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis[J]. Annals of Botany Plants, 12(1): 1-18. [28] Dubos C, Stracke R, Grotewold E, et al.2010. MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 15(10): 573-581. [29] Huang F,Cheng Y, Cao J H.2015a. Response of germination physiology of Cajanus cajan seeds to drought stress: Comparison between karst water and allogenic water treatments[J]. Journal of Resources & Ecology, 6(4): 263-268. [30] Huang P, Chen H, Mu R, et al.2015b. OsMYB511 encodes a MYB domain transcription activator early regulated by abiotic stress in rice[J]. Genetics & Molecular Research Gmr, 14(3): 9506-9517. [31] Katiyar A, Smita S, Lenka S, et al.2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis[J]. BMC Genomics, 13(1): 1-19. [32] Li X W, Li J W, Ying Z, et al.2013. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants[J]. Gene, 532(1): 72-79. [33] Meng D, Dong B Y, Niu L L, et al.2021. The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis[J]. The Plant Journal, 106(5): 1278-1297. [34] Meng D, Yang Q, Dong B Y, et al.2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants[J]. Plant Biotechnology Journal, 17(9): 1804-1813. [35] Nakabayashi R, Yonekura-Sakakibara K, Urano K, et al.2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. Plant Journal, 77(3): 367-379. [36] Oliveira M B, Junior M L, Grossi-de-Sá M F, et al.2015. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants[J]. Journal of Plant Physiology, 182: 13-22. [37] Shan H, Chen S M, Jiang J F, et al.2012. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana[J]. Molecular Biotechnology, 51(2): 160-173. [38] Shin D, Moon S J, Han S, et al.2011. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance[J]. Plant Physiology, 155(1): 421-432. [39] Shin L J, Lo J C, Yeh K C.2012. Copper chaperone antioxidant protein1 is essential for copper homeostasis[J]. Plant Physiology, 159(3): 1099-1110. [40] Song Z H, Dong B Y, Yang Q, et al.2020. Screening of CBL genes in pigeon pea with focus on the functional analysis of CBL4 in abiotic stress tolerance and flavonoid biosynthesis[J]. Environmental and Experimental Botany, 177: 104102. [41] Sparkes I A, Runions J, Kearns A, et al.2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants[J]. Nature Protocols, 1(4): 2019-2025. [42] Wilkins O, Nahal H, Foong J, et al.2009. Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J]. Plant Physiology, 149(2): 981-993. [43] Yang W L, Li N, Fan Y X, et al.2021. Transcriptome analysis reveals abscisic acid enhancing drought resistance by regulating genes related to flavonoid metabolism in pigeon pea[J]. Environmental and Experimental Botany, 191: 104627. [44] Yang Y, Chang D, Wang Y, et al.2016. Effect of methyl jasmonate(meja)on enhancing drought resistance of cotton[J]. Acta Agriculturae Boreali-occidentalis Sinica. 25(9):1331-1341. [45] Yin X M, Cui Y C, Wang M L, et al.2017. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice[J]. Biochemical & Biophysical Research Communications, 490(4): 1355-1361. [46] Zhang Z B, Zhu J, Gao J F, et al.2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis[J]. Plant Journal, 52(3): 528-538. [47] Zhu N, Cheng S F, Liu X Y, et al.2015. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice[J]. Plant Science, 236: 146-156.