Abstract:Low temperature will inhibit the growth and metabolism of denitrifying bacteria, resulting in poor nitrogen removal efficiency and substandard effluent quality in winter sewage treatment plants. The key measure to solve the problem is to screen the heterotrophic nitrifying and aerobic denitrification strains with high denitrification ability at low temperature. In this study, the low-temperature denitrifier strain was isolated from the activated sludge of a chemical plant in Inner Mongolia, and the strains was identified. Nitrogen removal characteristics were studied by using ammonia nitrogen, nitrate nitrogen and nitrite nitrogen as the only nitrogen sources. The effects of different single factors (carbon source, C/N, pH, rotational speed, temperature) on nitrogen removal performance were studied. The response surface method was used to optimize the key factors of nitrogen removal efficiency in order to determine the optimal nitrogen removal conditions. Finally, the isolated strain was applied to 2 different types of sewage in order to test its nitrogen removal effect. The results showed that the low-temperature resistant bacteria screened from sludge were identified as Enterobacter cloacae, and named N2 (GenBank No. OQ834747). The removal efficiency of strain N2 on ammonia nitrogen (304 mg/L), nitrate nitrogen (37 mg/L) and nitrite nitrogen (30 mg/L) reached 100% at 8 ℃. The strain N2 showed excellent removal ability of 300 mg/L ammonia nitrogen when carbon source of sucrose, carbon-to-nitrogen ratio (C/N) of 8~20, pH of 7~9, and rotation speed of 150~180 r/min, the optimal nitrogen removal conditions of strain N2 were as follows: carbon source of sucrose, C/N of 8.97, pH of 6.62, under these conditions, the removal rate of total nitrogen reached the highest (83.2%). Under the condition of low temperature of 8 ℃, the ammonia nitrogen removal rate of chemical plant sewage and coking plant sewage reached 100% and 91%, and the total nitrogen removal rate reached 99% and 80%, respectively. Therefore, N2 strain has excellent growth and nitrogen removal performance at low temperature and could be applied to wastewater nitrogen removal in cold areas.
[1] 包红旭, 胡家伟, 任宏鹏, 等. 2023. 耐低温菌株Pseudomonas sp. W4筛选及其异养-好氧脱氮性能[J]. 生态学杂志, 42(12): 1-12. (Bao H X, Hu J W, Ren H P, et al.2023. Isolation and nitrogen removal capability of a psychrotolerant bacterium Pseudomonas sp. strain W4[J]. Chinese Journal of Ecology, 42(12): 1-12.) [2] 蔡茜, 何腾霞, 冶青, 等. 2018. 耐冷嗜碱蒙氏假单胞菌H97的鉴定及其好氧反硝化特性[J]. 环境科学, 39(07): 3314-3320. (Cai X, He T X, Ye Q, et al.2018. Identification and characterization of a hypothermic alkaliphilic aerobic denitrifying bacterium Pseudomonas monteilii strain H97[J]. Environmental Science, 39(07): 3314-3320.) [3] 陈均利, 彭英湘, 刘锋, 等. 2020. 异养硝化-好氧反硝化菌脱氮特性研究进展[J]. 环境科学与技术, 43(05): 41-48. (Chen J L, Peng Y X, Liu F, et al.2020. Research advances in denitrification property of the heterotrophic nitrification-aerobic denitrification bacteria[J]. Environmental Science and Technology, 43(05): 41-48.) [4] 陈思宇, 刘晶, 杨正, 等. 2022. 低温异养硝化-好氧反硝化菌的分离及其除氮特性[J]. 湖南农业大学学报(自然科学版), 48(06): 712-717. (Chen S Y, Liu J, Yang Z, et al.2022. Isolation and nitrogen removal characteristics of a low temperature heterotrophic nitrification-aerobic denitrification bacterium[J]. Journal of Hunan Agricultural University (Natural Sciences), 48(06): 712-717.) [5] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, pp. 66-94. (Dong X Z, Cai M Y.2001. Handbook of Systematic Identification of Common Bacteria[M]. Science Press, Beijing, China, pp. 66-94.) [6] 董怡华, 张雪莹, 邹立安, 等. 2022. 耐低温好氧反硝化菌Aeromonas sp. 的分离鉴定及脱氮条件优化[J]. 微生物学报, 62(06): 2038-2052. (Dong Y H, Zhang X Y, Zou L A, et al.2022. Isolation and identification of a cold-tolerant and aerobic denitrifying bacterium Aeromonas sp. and optimization of denitrification conditions[J]. Acta Microbiologica Sinica, 62(06): 2038-2052.) [7] 冯诗语, 王馥容, 丛玉婷, 等. 2023.异养硝化-好氧反硝化菌生物脱氮特性及相关催化酶系的研究进展[J]. 中国渔业质量与标准, 13(01): 33-41. (Feng S Y, Wang F R, Cong Y T, et al.2023. Research progress on biological denitrification characteristics and related catalytic enzyme system of heterotrophic nitrification-aerobic denitrification bacteria: A review[J]. Chinese Fishery Quality and Standards, 13(01): 33-41.) [8] 高艳辉, 谭娜, 赵天涛, 等. 2022. 同步异养硝化好氧反硝化细菌Acinetobacter sp. TAC-1的氮代谢途径研究[J]. 重庆理工大学学报(自然科学), 36(01): 204-214. (Gao Y H, Tan N, Zhao T T, et al.2022. New insight into the nitrogen metabolism pathway of simultaneous heterotrophic nitrification-aerobic denitrification bacteria Acinetobacter sp.TAC-1[J]. Journal of Chongqing University of Technology (Natural Science), 36(01): 204-214.) [9] 高宇轩, 靳静晨, 徐利杉, 等. 2022a. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 38(7): 247-257. (Gao Y X, Jin J C, Xu L S, et al.Isolation of halophilic heterotrophic nitrification-aerobic denitrification bacterium Bacillus megatherium N07 and its denitrification characteristics[J]. Biotechnology Bulletin, 38(7): 247-257.) [10] 高宇轩, 靳静晨, 高雅娟, 等. 2022b. 异养硝化-好氧反硝化复合菌剂在垃圾渗滤液处理中的应用[J]. 生物技术进展, 12(04): 630-637. (Gao Y X, Jin J C, Gao Y J, et al.2022. Application of heterotrophic nitrification aerobic denitrifying bacteria in the landfill leachate treatment[J]. Current Biotechnology, 12(04): 630-637.) [11] 胡丹, 何富强, 杜全能, 等. 2022. 1株异养硝化-好氧反硝化神户肠杆菌的鉴定及脱氮特性[J]. 安徽农业科学, 50(10): 70-74. (Hu D, He F Q, Du Q N, et al.2022. Identification of a heterotrophic nitrification-aerobic denitrifying bacterium and its removal characteristics of nitrogen[J]. Journal of Anhui Agricultural Sciences, 50(10): 70-74.) [12] 黄诗玮, 田云, 马述, 等. 2023. 异养硝化-好氧反硝化菌氮代谢特性研究进展[J]. 生物学杂志, 40(01): 91-97. (Huang S W, Tian Y, Ma S, et al.2023. Research progress on nitrogen metabolism characteristics of heterotrophic nitrification-aerobic denitrification bacteria[J]. Journal of Biology, 40(01): 91-97.) [13] 景胜元. 2021. 碱性过硫酸钾消解紫外分光光度法测定水质中总氮实验空白的分析与研究[J]. 山西化工, 41(04): 131-133, 155. (Jing S Y, 2021. Analysis and study on the blank of total nitrogen determination in water by UV spectrophotometry with alkaline potassium persulfate digestion[J]. Shanxi Chemical Industry, 41(04): 131-133, 155.) [14] 利勇, 代群威, 王维富, 等. 2022. 一株异养硝化菌的筛选鉴定及其在农村养殖废水处理中的应用[J]. 广东农业科学, 49(12): 90-98. (Li Y, Dai Q W, Wang W F, et al.2022. Screening and identification of a strain of heterotrophic nitrification bacteria and its application in wastewater treatment of rural farming[J]. Guangdong Agricultural Sciences, 49(12): 90-98.) [15] 林浩澎, 孙慧明, 罗娉婷, 等. 2022. 一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J]. 微生物学通报, 49(10): 4066-4079. (Lin H P, Sun H M, Luo P T, et al.2022. Identification of an alkali-tolerant Pseudomonas plecoglossicida ZY-3 and its nitrogen removal characteristics[J]. Microbiology China, 49(10): 4066-4079.) [16] 蒙小俊, 祖德彪, 张玉秀, 等. 2022. 异养硝化-好氧反硝化菌HNAD4的脱氮性能分析[J]. 中国给水排水, 38(15): 29-36. (Meng X J, Zu D B, Zhang Y X, et al.2022. Denitrification performance of heterotrophic nitrification-aerobic denitrification bacteria HNAD4[J]. China Water and Wastewater, 38(15): 29-36. ) [17] 沈桐, 江进, 李宁, 等. 2023. 好氧反硝化细菌及其在微污染水源水修复中的应用研究进展[J]. 微生物学报, 63(02): 465-482. (Shen T, Jiang J, Li N, et al.2023. Aerobic denitrifiers and the application in remediation of micro-polluted water source[J]. Acta Microbiologica Sinica, 63(02): 465-482.) [18] 孙玲玉, 颜家保, 胡杰, 等. 2022. 耐盐异养硝化-好氧反硝化菌的筛选及特性研究[J]. 化工环保, 42(04): 485-491. (Sun L Y, Yan J B, Hu J, et al.2022. Screening and characteristic research of salt-tolerant heterotrophic nitrification-aerobic denitrification bacteria[J]. Environmental Protection of Chemical Industry, 42(04): 485-491.) [19] 王俊伟, 徐宏英, 张婵, 等. 2023. 低温脱氮菌及其工程应用研究进展[J]. 化学与生物工程, 40(05): 9-15. (Wang J W, Xu H Y, Zhang C, et al.2023. Research progress in low temperature denitrifying bacteria and their engineering applications[J]. Chemistry and Bioengineering, 40(05): 9-15.) [20] 夏远舰, 杨小丽, 李海华, 等. 2023. 异养硝化-好氧反硝化菌Acinetobacter johnsonii sp. N26的脱氮性能及代谢途径[J]. 微生物学通报, 50(04): 1374-1395. (Xia Y J, Yang X L, Li H H, et al.2023. Optimization of nitrogen removal performance and metabolic pathway of a heterotrophic nitrifying-aerobic denitrifying bacterial strain Acinetobacter johnsonii sp. N26[J]. Microbiology China, 50(04): 1374-1395.) [21] 杨墨, 刘乾亮, 吕东伟, 等. 2019. 低温异养硝化-好氧反硝化菌筛选及其脱氮特性[J]. 中国给水排水, 35(23): 100-104. (Yang M, Liu Q L, Lu D W, et al.2019. Isolation of cold-resistant heterotrophic nitrification-aerobic denitrification strain and its nitrogen removal performance[J]. China Water and Wastewater, 35(23): 100-104.) [22] 冶青, 何腾霞, 李振轮, 等. 2018. 1株耐冷耐碱好氧反硝化菌的鉴定及其脱氮特性[J]. 环境污染与防治, 40(09): 997-1001, 1005. (Ye Q, He T X, Li Z L, et al.2018. Identification and denitrification characteristics of a cold and alkali resistance aerobic denitrifiers[J]. Environmental Pollution and Control, 40(09): 997-1001, 1005.) [23] 张涛, 余冉. 2022. 低温对市政污水生物处理的影响及对策[J]. 净水技术, 41(06): 24-29, 38. (Zhang T, Yu R. 2022. Influence and countermeasures of low temperature on biological process for municipal wastewater treatment[J]. Water Purification Technology, 41(06): 24-29, 38.) [24] 张艺冉, 李再兴, 孙悦, 等. 2019. 耐冷好氧反硝化菌脱氮技术研究进展[J]. 环境工程, 37(12): 22-28, 48. (Zhang Y R, Li Z X, Sun Y, et al. 2019. Research progress on nitrogen removal of cold resistance aerobic denitrifying bacteria[J]. Environmental Engineering, 37(12): 22-28, 48.) [25] 赵紫荆, 张玉, 周集体. 2023. 菌株Acinetobacter sp. Z1低温脱氮除磷性能及氮磷转化途径[J]. 大连理工大学学报, 63(02): 261-272. (Zhao Z J, Zhang Y, Zhou J T.2023. Nitrogen and phosphorus removal performance and transformation pathway of strain Acinetobacter sp. Z1 at low temperature[J]. Journal of Dalian University of Technology, 63(02): 261-272.) [26] 周香群, 徐嘉璐, 张琴, 等. 2022. 1株好氧反硝化菌筛选及处理猪场厌氧消化废水[J]. 环境科学与技术, 45(08): 53-60. (Zhou X Q, Xu J L, Zhang Q, et al.2022. Screening of an aerobic denitrifying bacteria and treatment of anaerobic digestion piggery effluent[J]. Environmental Science and Technology, 45(08): 53-60.) [27] Huan C C, Yan Z Y, Sun J, et al.2022. Nitrogen removal characteristics of efficient heterotrophic nitrification-aerobic denitrification bacterium and application in biological deodorization[J]. Bioresource technology, 363: 128007. [28] Huang M Q, Cui Y W, Yang H J, et al.2023. A halophilic aerobic-heterotrophic strain Halomonas venusta SND-01: Nitrogen removal by ammonium assimilation and heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 374: 128758. [29] Jiang G, Liu Y J, Liu X S, et al.2023. Enhanced efficiency and mechanism of low-temperature biochar on simultaneous removal of nitrogen and phosphorus by combined heterotrophic nitrification-aerobic denitrification bacteria[J]. Bioresource Technology, 373: 128720. [30] Robertson L A, Kuenen J G, 1983. Thiosphaera pantotropha gen-nov sp-nov, a facultatively anaerobic, facultatively autotrophic sulphur bacterium[J]. Journal of General Microbiology, 129(9): 2847-2855. [31] Wang J L, Chen P Z, Li S P, et al.2022. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24[J]. Bioresource Technology, 361: 127692. [32] Wu Q F, He T X, Chen M P, et al.2022. Nitrogen removal characterization and functional enzymes identification of a hypothermia bacterium Pseudomonas fragi EH-H1[J]. Bioresource Technology, 365: 128156. [33] Zhang Q, Zhu Y N, Yuan C B, et al.2022. Nitrogen removal and mechanism of an extremely high-ammonia tolerant heterotrophic nitrification-aerobic denitrification bacterium Alcaligenes faecalis TF-1[J]. Bioresource Technology, 361: 127643. [34] Zhang S M, Sha C Q, Jiang W, et al.2015. Ammonium removal at low temperature by a newly isolated heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas fluorescens wsw-1001[J]. Environmental Technology, 36(19): 2488-2494. [35] Zhang M M, He T X, Wu Q F, et al.2023. Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1[J]. Frontiers in Microbiology, 14: 1130512. [36] Zheng M S, He D, Ma T, et al.2014. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1[J]. Bioresource Technology, 162: 80-88. [37] Zheng L L, Lin H, Dong Y B, et al.2023. A promising approach for simultaneous removal of ammonia and multiple heavy metals from landfill leachate by carbonate precipitating bacterium[J]. Journal of hazardous materials, 456: 131662.