Cloning, Expression Analysis and Subcellular Localization of PsDXR and PsMCS Genes in Tree Peony (Paeonia suffruticosa)
LI Zi-Yao1, LIU Bing1, HU Zeng-Hui1,2, WU Jing1,2*, LENG Ping-Sheng1,2*
1 College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206; 2 Beijing Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing 102206
Abstract:Terpenoids are the main floral components of tree peony (Paeonia suffruticosa). 1-deoxyxylulose-5- phosphate reductoisomerase (DXR) and 2-C-methylerythritol-2, 4-cyclodiphosphate synthase (MCS) play important roles as key enzymes in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway in plant terpene synthesis. To investigate the role of PsDXR and PsMCS genes in the terpene synthesis pathway of tree peony, the PsDXR (GenBank No. ON092613) and PsMCS genes (GenBank No. ON092614) were cloned using the 'Huang Guan' cDNA of tree peony in this study, and their bioinformatics analysis, subcellular localization and qRT-PCR were performed to analyze the expression in different flower developmental stages and tissues of tree peony 'Huang Guan'. The results showed that the cDNAs of PsDXR and PsMCS genes were 1 401 and 702 bp in length, encoding 466 and 233 amino acids, respectively. The proteins encoded by the 2 genes were stable hydrophilic proteins. The PsDXR protein had the conserved domains of DXP_reductoisom and DXP_redisom_C, and the PsMCS protein had the MECDP-specific domain. The results of subcellular localization showed that both proteins were localized in the chloroplast. The expression patterns of PsDXR and PsMCS genes both increased and then decreased in flower development stages; both 2 genes were differentially expressed in different tissues (P<0.05). The results indicated that PsDXR and PsMCS genes might play important roles in the MEP metabolic pathway of tree peony, provides a molecular basis for the biosynthesis of terpenes in tree peony.
李紫瑶, 刘冰, 胡增辉, 吴静, 冷平生. 牡丹PsDXR和PsMCS基因的克隆、表达分析及亚细胞定位[J]. 农业生物技术学报, 2023, 31(4): 730-740.
LI Zi-Yao, LIU Bing, HU Zeng-Hui, WU Jing, LENG Ping-Sheng. Cloning, Expression Analysis and Subcellular Localization of PsDXR and PsMCS Genes in Tree Peony (Paeonia suffruticosa). 农业生物技术学报, 2023, 31(4): 730-740.
[1] 李海燕, 李火根, 杨秀莲, 等. 2018. 植物花香物质合成与调控研究进展[J]. 分子植物育种, 16(1): 123-129. (Li H Y, Li H G, Yang X L, et al. 2018. Advances studies on the synthesis and regulation of floral substances in plant[J]. Molecular Plant Breeding, 16(1): 123-129. ) [2] 李莉, 高凌云, 董越, 等. 2008. 植物类异戊二烯生物合成相关酶基因研究进展[J]. 浙江师范大学学报(自然科学版), 31(4): 461-466. (Li L, Gao L Y, Dong Y, et al. 2008. Advances of enzymes and its genes in the plant isoprenoids biosynthesis pathways[J]. Journal of Zheji-ang Normal University (Natural Sciences), 31(4): 461-466. ) [3] 刘洪峰, 高乐旋, 胡永红. 2015. 牡丹不同发育阶段种子和花瓣组织实时荧光定量 PCR 中内参基因的挖掘与筛选[J]. 农业生物技术学报, 23(12): 1639-1648. (Liu H F, Gao L X, Hu Y H. 2015. Reference genes discovery and selection for quantitative real-time PCR in tree peony seed and petal tissue of different development stages[J]. Journal of Agricultural Biotechnology, 23(12): 1639-1648. ) [4] 聂梦云. 2016. 烟草萜类代谢途径相关基因的克隆及功能分析[D]. 硕士学位论文, 西南大学, 导师: 夏庆友. pp. 13-37. (Nie M Y. 2016. Cloning and functional analysis of the genes related to the metabolism of the terpenoids from Nicotiana tobacc[D]. Thesis for M. S., Southwest University, Supervisor: Xia Q Y, pp. 13-37. ) [5] 王利民, 张和臣, 符真珠, 等. 2021. 牡丹花香育种研究进展[DB/OL]. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.s20210623.1004.004.html, 2021-06-23. (Wang L M, Zhang H C, Fu Z Z, et al. 2021. Research progress on flower fragrance breeding of peony[DB/ OL]. Molecular Plant Breed -ing, https://kns.cnki.net/kcms/detail/46.1068.s20210623.1004.004.html, 2021-06-23. ) [6] 王润发. 2014. 盾叶薯蓣DXR 基因和 MDS 基因的克隆与功能验证[D]. 硕士学位论文, 湖北大学, 导师: 陈永勤. pp. 40-44. (Wang R F. 2014. Cloning and characteriza-tion of genes encodin DXR gene and MDS gene from Di-oscorea zingiberensis C. H Wright[D]. Thesis for M. S., Hubei University, Supervisor: Chen Y Q, pp. 40-44. ) [7] 王英, 贾伟章, 谭明俊, 等. 2013. 黄花蒿 MCS 基因的克隆及其序列分析与原核表达[J]. 中草药, (16): 2288-2293. (Wang Y, Jia W Z, Tan M J, et al. 2013. Cloning and se-quence analysis of MCS# gene in Artemisia annua# and its prokaryotic expression[J]. Chinese Traditional and Herb-al Drugs, (16): 2288-2293. ) [8] 王珍珍, 王其刚, 唐开学,等. 2019. 云南主栽食用玫瑰花香成分及关键花香基因表达分析[J]. 植物生理学报, 55(7): 1038-1046. (Wang Z Z, Wang Q G, Tang K X, et al. 2019. Analysis of volatile components and scent-related gene expressions of edible roses in Yunnan[J]. Plant Physiology Communications, 55(7): 1038-1046. ) [9] 杨颖舫. 2010. 南方红豆杉 MCT 和 MCS 基因的克隆与功能分析[D]. 硕士学位论文, 西南大学, 导师: 廖志华. pp. 63-65. (Yang Y F. 2010. Molecular cloning,characteriza-tion and functional analysis of MCT and MCS genes of Taxus Chinensis[D]. Thesis for M. S., Southwest Univer-sity, Supervisor: Liao Z H. pp. 63-65. ) [10] 张玲. 2019. 牡丹花香特异种质筛选及其花香形成关键基因挖掘[D]. 硕士学位论文, 南京农业大学, 导师: 王亮生. pp. 55-57. (Zhang L. 2019. Screening of special flo-ral scent germplasm and exploration of the key genes re-lated to biosynthesis of floral scent in tree peony[D]. Thesis for M. S., Nanjing Agricultural University, Super-visor: Wang L S. pp. 55-57.) [11] 张曼. 2016. 青蒿AaCMK, AaMCT, AaMCS 基因的克隆与功能分析[D]. 硕士学位论文, 西南大学, 导师: 廖志华. pp. 54-57. (Zhang M. 2014. (Molecular cloning and characterization of the 2-C-methyl-D-erythritol4-phos-phate cytidylyltransferase gene, 4-(cytidine 5'-diphos-pho) -2-C-methylery-thitol kinase gene, 2-C-methy-lerythritol-2, 4-cyclodiphosphate synthase gene from Ar-temisia annua L. [D]. Thesis for M. S., Southwest Univer-sity, Supervisor: Liao Z H. pp. 54-57. ) [12] 张伟, 梁成伟. 2014. 植物类异戊二烯合成途径的研究进展[J]. 山东化工, 43(5): 57-58. (Zhang W, Liang C W. 2014. Research progress of plant isoprenoids biosynthet-ic pathway[J]. Shandong Chemical Industry, 43(5): 57-58. ) [13] 朱畇昊, 董诚明, 俎梦航等. 2017. 地黄 RgDXR 基因的克隆及表达分析[J]. 植物生理学报, 53(4): 563-571. (Zhu Y H, Dong C M, Zu M H, et al. 2017. Cloning and expres-sion analysis of 1-deoxy-D-xylulose 5-phosphate reduc-toisomerase gene in Rehmannia glutinosa[J]. Plant Phys-iology Communications, 53(4): 563-571. ) [14] Aubourg S, Lecharny A, Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabi-dopsis thaliana[J]. Molecular Genetics and Genomics, 267(6): 730-745. [15] Battilana J, Emanuelli F, Gambino G, et al. 2011. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on muscat flavour forma-tion[J]. Journal of Experimental Botany, 62(15): 5497-5508. [16] Bick J A, Lange B M. 2003. Metabolic cross talk between cy-tosolic and plastidial pathways of isoprenoid biosynthe-sis: Unidirectional transport of intermediates across the chloroplast envelope membrane[J]. Archives of Bio-chemistry and Biophysics, 415(2): 146-154. [17] Cheng S, Li L, Yuan H, et al. 2015. Molecular cloning and characterization of GbMECT and GbMECP gene promot-ers from Ginkgo biloba[J]. Genetics and Molecular Re-search, 14(4): 15112-15122. [18] Devi K, Dehury B, Phukon M, et al. 2015. Novel insights into structure-function mechanism and tissue-specific expres-sion profiling of full-length dxr gene from Cymbopogon winterianus[J]. Febs Open Bio, 5(1): 325-334. [19] Fan H, Wu Q, Wang X, et al. 2016. Molecular cloning and ex-pression of 1-deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoisomerase in Dendrobium officinale[J]. Plant Cell, Tissue and Organ Culture, 125(2): 381-385. [20] Hsieh M H, Chang C Y, Hsu S J, et al. 2008. Chloroplast lo-calization of methylerythritol 4-phosphate pathway en-zymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis[J]. Plant Molecu-lar Biology, 66(6): 663-673. [21] Kim S M, Kuzuyama T, Chang Y J, et al. 2006. Cloning and characterization of 2-C-methyl-D-erythritol 2, 4-cyclodi-phosphate synthase (MECS) gene from Ginkgo biloba[J]. Plant Cell Reports, 25(8): 829-835. [22] Li R, Li Z, Leng P, et al. 2021. Transcriptome sequencing re-veals terpene biosynthesis pathway genes accounting for volatile terpene of tree peony[J]. Planta, 254(4): 1-13. [23] Martin D M, Aubourg S, Schouwey M B, et al. 2010. Func-tional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays[J]. BMC Plant Biology, 10(1): 1-22. [24] Mcgarvey D J, Croteau R. 1995. Terpenoid metabolism[J]. Plant Cell, 7(7): 1015-1026. [25] Tong Y, Su P, Zhao Y, et al. 2015. Molecular cloning and char-acterization of DXS and DXR genes in the terpenoid bio-synthetic pathway of Tripterygium wilfordii[J]. Interna-tional Journal of Molecular Sciences, 16(10): 25516-25535. [26] Vaccaro M, Malafronte N, Alfieri M, et al. 2014. Enhanced biosynthesis of bioactive abietane diterpenes by overex-pressing AtDXS or AtDXR genes in Salvia sclarea hairy roots[J]. Plant Cell, Tissue and Organ Culture, 119(1): 65-77. [27] Veau B, Courtois M, Oudin A, et al. 2000. Cloning and ex-pression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus[J]. Biochimica et Bio-physica Acta (BBA) -Gene Structure and Expression, 1517(1): 159-163. [28] Vranová E, Coman D, Gruissem W. 2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annual Review of Plant Biology, 64: 665-700. [29] Yan P, Zeng Y, Shen W, et al. 2020. Nimble cloning: A simple, versatile, and efficient system for standardized molecu-lar cloning[J]. Annual Review of Plant Biology, 15(7): 460. [30] You M, Lee Y, Kim J, et al. 2020. The organ-specific differen-tial roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds[J]. BMC Plant Biology, 20(1): 1-16. [31] Zhang M, Li K, Liu J, et al. 2012. Identification and differen-tial expression of two isogenes encoding 1-deoxy-D-xy-lulose 5-phosphate reductoisomerase in Glycine max[J]. Plant Biotechnology Reports, 6(4): 363-371. [32] Zhang T, Sun M, Guo Y, et al. 2018. Overexpression of LiDXS and LiDXR from lily (Lilium 'Siberia') enhances the ter-penoid content in tobacco flowers[J]. Frontiers in Plant Science, 9(9): 909. [33] Zhang Y, Li C, Wang S, et al. 2021a. Transcriptome and vola-tile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fra-grance of tree peony[J]. Industrial Crops and Products, 162: 113286. [34] Zhang Y, Yan H, Li Y, et al. 2021b. Molecular cloning and functional analysis of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Santalum album[J]. Genes, 12(5): 626.