Identification of PPP3CA Gene SNP and Its Association Analysis withGrowth Traits in Weining Chickens (Gallus gallus)
ZHAO Zhong-Long1, RAN Guang-You1, ZHANG Yong1*, ZHANG Xi-Ben2, WANG Zhi-Wei1, AI Zhao-Bi1, YANG Run-Qian1, LI Wei-Bo2, CHEN Ze-Lin2, YE Hong-Ying2
1 College of Animal Science/Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; 2 Bijie City Academy of Agricultural Sciences, Bijie 551700, China
Abstract:The Weining chicken (Gallus gallus) is one of the valuable local poultry genetic resources inGuizhou province. It is of great significance for the genetic improvement and molecular marker-assisted breeding of Weining chickens to study their growth traits and uncover their genetic effects using candidate genes. In this study, a total of 113 Weining chickens (58 males and 55 females) aged 300 days were selected asthe study subjects. PCR amplification and direct sequencing were used to identify the SNP locus of PPP3CAgene. Excel was used to calculate genotype frequency, allele frequency, effective allele number and polymorphism information content of each site, and to analyze whether each mutation site was in Hardy- Weinberg equilibrium state. The secondary structure analysis of mRNAs was performed using RNA fold online software. SPSS 27.0 was used to analyze the association between genotypes of different polymorphicloci and body size indexes. The results showed that 3 SNP sites were found on exon 6 of PPP3CA gene inWeining chickens, namely g. 151368C>T, g. 151389T>C and g. 151402T>G, among which missense mutation occurred at g.151368C>T site, resulting in the conversion of arginine at position 206 on mRNA to tryptophan. g. 151402T>G site missense mutation resulting in the conversion of isoleucine at position 216 to tryptophan. Linkage disequilibrium analysis showed that there was a strong linkage disequilibrium effect between g.151389T>C and g. 151368C>T, g. 151402T>G. The χ2 test showed that g. 151368C>T and g. 151389T>C matched Hardy-Weinberg equilibrium, while g. 151402T>G deviated from Hardy-Weinberg equilibrium. At the g.151402T>G site, association analysis showed that TT and GG individuals had significantly higher bodyweight, body slope length, and chest width than TG individuals (P<0.05), TT individuals had significantlyhigher chest depth than GG and TG individuals (P<0.05), GG individuals had significantly higher chest depth than TG individuals (P<0.05), and TT and GG individuals had extremely significantly longer keel and shank length than TG individuals (P<0.01). Individuals of the TT and GG types had considerably larger tibia girth than those of the TG type (P<0.05). Haplotype and diplotype analysis of 3 SNPs showed that there were 4haplotypes and 8 diplotypes. Among them, diplotype H2H3 (TCTCTT) and H1H1 (TTCCGG) could be used as molecular marker sites to improve keel length, shank length and shank girth. This study provides a scientific basis for molecular marker-assisted selection for growth traits of Weining chickens.
赵中龙, 冉光友, 张勇, 张习本, 王智伟, 艾照碧, 杨润黔, 李未博, 陈泽林, 叶红英. 威宁鸡PPP3CA基因SNP鉴定及其与生长性状的关联分析[J]. 农业生物技术学报, 2025, 33(6): 1336-1345.
ZHAO Zhong-Long, RAN Guang-You, ZHANG Yong, ZHANG Xi-Ben, WANG Zhi-Wei, AI Zhao-Bi, YANG Run-Qian, LI Wei-Bo, CHEN Ze-Lin, YE Hong-Ying. Identification of PPP3CA Gene SNP and Its Association Analysis withGrowth Traits in Weining Chickens (Gallus gallus). 农业生物技术学报, 2025, 33(6): 1336-1345.
[1] 白洋洋, 杜书增, 李信, 等. 2024. 山羊 PPP3CA 基因拷贝数变异及其与生长性状的关联分析[J]. 农业生物技术学报 , 32(05): 1071-1080. (Bai Y Y, Du S Z, Li X, et al.2024. Copy number variation of PPP3CA gene and its association with growth traits in goats[J]. Journal of Ag-ricultural Biotechnology, 32(05): 1071-1080.) [2] 段益欣, 张林云, 赵永聚. 2024. SNP 遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 55(05): 1854-1865. (Duan Y X, Zhang L Y, Zhao Y J.2024. SNP heritability estimation method, influencing factors and its application in livestock and poultry breed-ing[J]. Journal of Animal Science and Veterinary Medi-cine, 55(05): 1854-1865.) [3] 谷婧, 田丽军. 2011. 钙调神经磷酸酶在运动中的作用及调节[J]. 山西大同大学学报(自然科学版), 27(1): 55-57. (Gu J, Tian L J.2011. Role and regulation of calcineurin in exercise[J]. Journal of Shanxi Datong University(Natural Science), 27(1): 55-57.) [4] 高风英, 佟延南, 刘志刚, 等. 2024. 尼罗罗非鱼 MYF6 基因 SNP 位点筛选及其与生长性状的关联分析[J]. 农业生物技术学报, 32(02): 396-416. (Gao F Y, Tong Y N, Liu Z G, et al.2024. Screening of SNP loci of MYF6 gene and its association with growth traits in Nile tilapia[J]. Journal of Agricultural Biotechnology, 32(02): 396-416.) [5] 惠茂茂, 陈祥, 敖叶, 等. 2021. 黔北麻羊 PPP3CA 基因克隆、 生物信息学分析及不同组织表达研究[J]. 中国畜牧杂志, 57(10): 84-88. (Hui M M, Chen X, Ao Y, et al.2021. Cloning, bioinformatics analysis and expression of PPP3CA gene in different tissues of Qianbei Ma sheep[J]. Chinese Journal of Animal Science, 57(10): 84-88.) [6] 蒋传美, 阮涌, 李吉凤, 等. 2024. 香苏杂交猪 ARHGAP24 基因 SNP 检测及生长性状关联分析[J]. 农业生物技术学报 , 32(04): 833-842. (Jiang C M, Ruan Y, Li J F, et al.2024. SNP detection of ARHGAP24 gene and correlation analysis of growth traits in Xiangsu hybrid pigs[J]. Chi-nese Journal of Agricultural Biotechnology, 32(04): 833-842.) [7] 李双双, 张迎新, 范成明, 等. 2018. 单倍型分析技术研究进展[J]. 生物工程学报, 34(06): 852-861. (Li S S, Zhang Y X, Fan C M, et al.2018. Advances in haplotype analy-sis technique[J]. Chinese Journal of Biotechnology, 34(06): 852-861.) [8] 刘卫军, 沈瑛, 丁健. 2003. 蛋白磷酸酶 2A 的结构、功能和活性调节[J]. 生物化学与生物物理学报,(02): 105-112. (Liu W J, Shen Y, Ding J. 2003. Regulation of structure, function and activity of protein phosphatase 2A[J]. Jour-nal of Biochemistry and Biophysics,(02): 105-112.) [9] 龙霞, 李维, 杨书含, 等. 2024. 贵州地方鸡种体重生长曲线的拟合分析[J]. 畜牧与兽医, 56(01): 1-5. (Long X, Li W, Yang S H, et al.2024. Fitting analysis of weight growth curve of local chicken breeds in Guizhou[J]. Ani-mal Husbandry and Veterinary Medicine, 56(01): 1-5.) [10] 欧茂均, 王天松, 张勇, 等. 2021. 威宁鸡 GnRH1、GnRH2 基因 SNPs 鉴定及其与蛋品质性状的关联研究[J]. 中国畜牧杂志, 57(06): 136-141. (Ou M J, Wang T S, Zhang Y, et al.2021. SNPs identification of GnRH1 and GnRH2 genes and their association with egg quality traits in Weining chickens[J]. Chinese Journal of Animal Sci-ence, 57(06): 136-141.) [11] 单艳菊, 宋迟, 束婧婷, 等. 2015. 钙调磷酸酶催化亚基 A 基因(PPP3CA)在不同品种鸭发育早期肌肉中的表达及其与肌纤维特性的相关性[J]. 农业生物技术学报, 23(02): 236-243. (Shan Y J, Song C, Shu J T, et al.2015. Expression of calcineurin catalyzed subunit A gene(PPP3CA)in early muscle development of different ducks and its correlation with muscle fiber characteris-tics[J]. Journal of Agricultural Biotechnology, 23(02): 236-243.) [12] 王兴群, 毛以智, 张继, 等. 2021. PPP3CA 基因多态性与江口萝卜猪肉质性能关联性分析[J]. 中国畜牧杂志, 57(01): 63-71. (Wang X Q, Mao Y Z, Zhang J, et al.2021. Association analysis between PPP3CA gene polymor-phism and meat quality performance of Jiangkou radish pigs[J]. Chinese Journal of Animal Husbandry, 57(01): 63-71.) [13] 王盈童, 杨酸, 谭元成, 等. 2022. 长顺绿壳蛋鸡 SLC8A1 基因多态性及其对蛋壳品质的影响[J]. 中国畜牧兽医, 49(12): 4688-4696. (Wang Y T, Yang S, Tan Y C, et al.2022. SLC8A1 gene polymorphism and its effect on egg-shell quality of Changshun green shell laying hens[J]. Chinese Journal of Animal Science and Veterinary Medi-cine, 49(12): 4688-4696.) [14] 吴雪, 张继, 刘若余, 等. 2021. 江口萝卜猪 PPP3CA 和PPP3R1 基因的表达规律研究[J]. 贵州畜牧兽医, 45(03): 4-9. (Wu X, Zhang J, Liu R Y, et al.2021. Expres-sion of PPP3CA and PPP3R1 genes in Jiangkou radish pigs[J]. Guizhou Animal Husbandry and Veterinary Sci-ence, 45(03): 4-9.) [15] 赵永, 郭小江, 李维, 等. 2024. 柯乐猪 PAEP 基因多态性及其与繁殖性状的关联分析[J]. 中国畜牧兽医, 51(04): 1593-1602. (Zhao Y, Guo X J, Li W, et al.2024. Poly-morphism of PAEP gene and its association with repro-ductive traits in Kele pigs[J]. Chinese Journal of Ani-mal Science and Veterinary Medicine, 51(04): 1593-1602.) [16] 周迪, 蒋桂荣, 欧仁, 等. 2023. 赤水乌骨鸡 PPP3CA 基因多态性与生长性状关联分析[J]. 西南农业学报, 36(07): 1547-1554. (Zhou D, Jiang G R, Ou R, et al.2023. As-sociation analysis of PPP3CA gene polymorphism and growth traits in Chishui black bone chickens[J]. South-west Chinese Journal of Agricultural Sciences, 36(07): 1547-1554.) [17] 向进, 王春源, 吴燕, 等. 2023. 柯乐猪 DSP 基因 SNP 鉴定及其与繁殖性状的关联分析[J]. 中国畜牧杂志 , 59(8): 95-102. (Xiang J, Wang C Y, Wu Y, et al.2023. SNP identification of DSP gene and its association with re-productive traits in Kole pigs[J]. Chinese Journal of Ani-mal Science, 59(8): 95-102.) [18] Bai Y, Zhang T, Liu N, et al.2022. Investigation of copy num-ber variations(CNVs)of the goat PPP3CA gene and their effect on litter size and semen quality[J]. Animals(Basel), 12(4): 445. [19] Chen G, Cheng X, Shi G, et al.2019. Transcriptome analysis reveals the effect of long intergenic noncoding RNAs on pig muscle growth and fat deposition[J]. BioMed Re-search International, 2019: 2951427. [20] Guo S, Liu Y, Xu Y, et al.2023. Identification of key genes af-fecting sperm motility in chicken based on whole-tran-scriptome sequencing[J]. Poultry Science, 102(12): 103135. [21] Hudson M B, Price S R.2013. Calcineurin: A poorly under-stood regulator of muscle mass[J]. The International Journal of Biochemistry & Cell Biology, 45(10): 2173-2178. [22] Hudson M B, Woodworth-Hobbs M E, Zheng B, et al.2014. miR-23a is decreased during muscle atrophy by a mech-anism that includes calcineurin signaling and exosome-mediated export[J]. American Journal of Physiology-Cell Physiology, 306(6): C551-C558. [23] Li C, Basarab J, Snelling W M, et al.2004. Assessment of po-sitional candidate genes myf5 and igf1 for growth on bo-vine chromosome 5 in commercial lines of Bos taurus[J]. Journal of Animal Science, 82(1): 1-7. [24] Liu J, Xu L, Ding X, et al.2023. Genome-wide association analysis of reproductive traits in Chinese Holstein cattle[J]. Genes(Basel), 15(1): 12. [25] Shen X, Zhao X, He H, et al.2023. Evolutionary conserved circular MEF2A RNAs regulate myogenic differentia-tion and skeletal muscle development[J]. PLOS Genet-ics, 19(9): e1010923. [26] Talmadge R J, Otis J S, Rittler M R, et al.2004. Calcineurin activation influences muscle phenotype in a muscle-spe-cific fashion[J]. BMC Cell Biology, 5: 28. [27] Wan L, Ma J, Xu G, et al.2014. Molecular cloning, structural analysis and tissue expression of protein phosphatase 3 catalytic subunit alpha isoform(PPP3CA)gene in Tian-fu goat muscle[J]. International Journal of Molecular Sciences, 15(2): 2346-2358. [28] Zhang W, Jin M, Lu Z, et al.2023. Whole genome resequenc-ing reveals selection signals related to wool color in sheep[J]. Animals(Basel), 13(20): 3265.