Validation of Genetic Markers Related to Growth Traits in Datong Yak (Bos grunniens) and Ashidan Yak
MA Wan-Hao1,2, MA Xiao-Ling2, SUN Wu1, YIN Man-Cai3,4, JING Jian-Wu2, HU Guang-Wei2, LI Hong-Kang2, ZHAO Shou-Bao2, MA Hai-Fu2, HAN Peng2, ZHANG You-Zhu2, ZHANG Jun1*
1 Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining 810016, China; 2 Qinghai Yak Breeding Extension Service Center, Xining 810100, China; 3 Qinghai Animal Husbandry Station, Xining 810001, China; 4 Datong Comprehensive Experimental Station, Xining 810100, China
Abstract:Connective tissue growth factor (CTGF), CREB regulated transcription coactivator 3 (CRTC3), and transmembrane protein 18 (TMEM18) play crucial roles in the growth and development of mammals. To identify genetic markers and gene polymorphisms associated with growth traits in the populations of Datong yak (Bos grunniens) and Ashidan yak, Sanger sequencing technology was used to detect and genotype 5 SNPs in the CTGF, CRTC3 and TMEM18 genes in Datong yak and Ashidan yak populations, and the association between the genotypes of polymorphic sites and growth traits were analyzed. The results showed that there were 2 genotypes at the G2511A loci of the CTGF gene in Datong yak and Ashidan yak populations, 3 genotypes at the C86041T, G86075A loci of the CRTC3 gene, and 3 genotypes at the C1267T, C4447T loci of the TMEM18 gene. Among them, both the C86041T loci of the CRTC3 gene and the C4447T loci of the TMEM18 gene were moderately polymorphic (0.25<PIC<0.50).However, the Chi-square test revealed that none of the 5 SNPs reached Hardy-Weinberg equilibrium in the 2 yak populations, suggesting that the 2 populations have undergone long-term artificial selection and breeding. The association analysis of growth traits showed that the G2511A loci of the CTGF gene was significantly correlated with body height (P<0.05); 2 SNPs of the CRTC3 gene were significantly associated with body weight (P<0.05), and the G86075A loci was significantly correlated with both body height and chest circumference (P<0.05); 2 SNPs of the TMEM18 gene were significantly associated with body weight (P<0.05). Therefore, these growth trait-related SNP loci were correlated with the growth traits of Datong yaks and Ashidan yaks, and could be used as candidate genes for molecular marker-assisted selection in future breeding improvement. This study provides potential genetic markers for yak breeding improvement.
[1] 毕亚珍, 尚明玉, 胡文萍, 等. 2023. 绵羊生长性状间的相关和回归分析及TRHDE基因多态性与生长性状的关联分析[J]. 畜牧兽医学报, 54(4): 1415-1428.(Bi Y Z, Shang M Y, Hu W P, et al.2023. Correlation and regression analysis among growth traits and association analysis of TRHDE gene polymorphism with growth traits in sheep[J]. Acta Veterinaria et Zootechnica Sinica, 54(4): 1415-1428.) [2] 柴志欣, 武志娟, 王吉坤, 等. 2022. CTGF、Gprin3基因多态性及其与牦牛体尺性状的关联分析[J]. 中国畜牧兽医, 49(06): 2216-2227.(Chai Z X, Wu Z J, Wang J K, et al.2022. Polymorphisms of CTGF and Gprin3 genes and their association with body size traits in yaks[J]. China Animal Husbandry & Veterinary Medicine, 49(06): 2216-2227.) [3] 陈美, 柴志欣, 武志娟, 等. 2021, 牦牛CTGF基因克隆、蛋白功能及组织表达分析[J]. 华北农学报, 36(S1): 361-367.(Chen M, Chai Z X, Wu Z J, et al.2021. Cloning, protein function and tissue expression analysis of yak CTGF gene[J]. Acta Agriculturae Boreali-Sinica, 36(S1): 361-367.) [4] 葛菲. 2021. 阿什旦牦牛早期生长性状的全基因组选择与关联分析[D]. 硕士学位论文, 中国农业科学院, 导师: 阎萍, pp. 30-35.(Ge F.2021. Genomic selection and genome-wide association analysis for early growth traits in Ashidan yak[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Yan P, pp. 30-35.) [5] 李歆怡, 王福彬, 黄纯, 等. 2023. 大通牦牛PDGFD基因克隆、生物信息学及组织表达谱分析[J]. 农业生物技术学报, 31(03): 518-529.(Li X Y, Wang F B, Huang C, et al.2023. Cloning, bioinformatics and tissue expression profile analysis of PDGFD gene in yak (Bos mutus)[J]. Journal of Agricultural Biotechnology, 31(03): 518-529.) [6] 李月娇, 崔燕, 张倩, 等. 2021. CTGF和FGF-2在不同年龄牦牛肺内的分布与表达研究[J]. 畜牧兽医学报, 52(07): 2025-2033.(Li Y J, Cui Y, Zhang Q, et al.2021. Study on the distribution and expression of CTGF and FGF-2 in the lungs of yaks at different ages[J]. Acta Veterinaria et lootechnica Sinica, 52(07): 2025-2033.) [7] 林平. 2013. 大白猪和通城猪肌纤维组织学特性差异和SH2B1, TEM18, IDH3B基因遗传效应分析[D]. 硕士学位论文, 华中农业大学, 导师: 刘榜, pp. 38-43.(Lin P.2013. Difference of muscle fiber histological characteristics between large white and Tongcheng pigs and genetic effects of SH2BI, TMEM18, IDH3B genes[D]. Thesis for M.S., Huazhong Agriculture University, Supervisor: Liu B, pp. 38-43. ) [8] 马伟. 2012. 牛TMEM18基因克隆, SNP检测及其与部分经济性状的关联分析[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈宏, pp. 32-37.(Ma W.2012. Molecular cloning, SNP detection of Bovine TMEM18 gene and their associations with growth traits[D]. Thesis for M.S., Northwest A&F University, Supervisor: Chen H, pp. 32-37.) [9] 马伟, 马云, 刘栋, 等. 2013. 郏县红牛跨膜蛋白18基因(TMEM18) SNPs检测及其与生长性状的关联分析[J]. 农业生物技术学报, 21(02): 173-178.(Ma W, Ma Y, Liu D, et al.2013. SNPs detection of transmembrane protein 18 gene (TMEM18) and its association with growth traits in Jiaxian red cattle (Bos taurus)[J]. Journal of Agricultural Biotechnology, 21(02): 173-178.) [10] 马武, 王宏博, 张浩, 等. 2020. 无角牦牛crtc3基因多态性及其与生长性状的相关分析[J]. 中国兽医学报, 40(06): 1232-1236, 1240.(Ma W, Wang H B, Zhang H, et al.2020. Association of single nucleotide polymorphism of crtc3 gene with growth traits in polled yak[J]. Chinese Journal of Veterinary Science, 40(06): 1232-1236, 1240.) [11] 祁增源, 高占红, 周建强, 等. 2022. 青海高原型牦牛SCD基因SNP及单倍型与生长性状的关联性分析[J]. 农业生物技术学报, 30(07): 1314-1320.(Qi Z Y, Gao Z H, Zhou J Q, et al.2022. Correlation analysis of SNP and haplotypes of SCD gene with growth traits in Qinghai plateau yak (Bos grunniens)[J]. Journal of Agricultural Biotechnology, 30(07): 1314-1320.) [12] 吴磊, 刘瑞莉, 柏学进, 等. 2021. 布莱凯特黑牛CRTC1、CRTC3基因克隆测序及表达分析[J]. 中国畜牧杂志, 57(03): 119-125.(Wu L, Liu L L, Bai X J, et al.2021. Cloning, sequencing and expression analysis of CRTC1 and CRTC3 genes in Black cattle[J]. Chinese Journal of Animal Science, 57(03): 119-125.) [13] 徐怀超. 2016. CRTC家族3个基因SNP检测及其与秦川肉牛生长性状和胴体性状的关联性分析[D]. 硕士学位论文, 西北农林科技大学, 昝林森, pp. 47-48.(Xu H C.2016. Singie nucleotide polymorphism of 3 genes of CRTC and associations with growth and carcass traits in Qinchuan beef cattle[D]. Thesis for M.S., Northwest A&F University, Supervisor: Zan L S, pp. 47-48.) [14] 徐怀超, 昝林森, 王洪宝, 等. 2016. CRTC3基因多态性及基因型组合与秦川牛生长性状的关联分析[J]. 畜牧兽医学报, 47(11): 2184-2190.(Xu H C, Zan L S, Wang H B, et al.2016, Association of CRTC3 gene polymorphisms and genotype combinationn with growth traits of Qinchuan cattle[J]. Acta Veterinaria et Zootechnica Sinica, 47(11): 2184-2190.) [15] 展西振, 刘军, 彭雅鑫, 等. 2023. 猪PCK1基因SNPs检测及其与生长育肥性状的关联分析[J]. 中国畜牧杂志, 59(11): 106-111,118.(Zhan X Z, Liu J, Peng Y X, et al. 2023. Detection of SNPs in PCK1 gene and its association with growth and fattening traits in pig[J]. Chinese Journal of Animal Science, 59(11): 106-111, 118.) [16] 张欢. 2017. 牦牛TMEM18基因多态性及其功能研究[D]. 硕士学位论文, 甘肃农业大学, 赵兴绪, pp. 18-25.(Zhang H.2017. Polymorphism of TMEM18 gene and its function in yak[D]. Thesis for M.S., Gansu Agriculture University, Supervisor: Zhao X X, pp. 18-25.) [17] 张欢, 张全伟, 王琪, 等. 2017. 牦牛TMEM-18基因多态性及其与生产性能关联分析[J]. 生物技术通报, 33(02): 89-96.(Zhang H, Zhang Q W, Wang Q, et al.2017. Polymorphism of TMEM-18 gene and its correlation with production traits in yak[J]. Biotechnology Bulletin, 33(02): 89-96.) [18] 张强, 洛桑顿珠, 鲜莉莉, 等. 2022. 阿里牦牛经济性状相关遗传标记基因型频率研究[J]. 西南农业学报, 35(05): 1209-1215.(Zhang Q, Luosang D Z, Xian L L, et al.2022. Genotype frequency identification of SNP markers related to economic trait in Tibet Ali yak[J]. Southwest China Journal of Agricultural Sciences, 35(05): 1209-1215.) [19] 张强, 鲜莉莉, 彭阳洋, 等. 2023. 吉拉牦牛重要经济性状分子选育潜力研究[J]. 中国饲料, (15): 24-32.(Zhang Q, Xian L L, Peng Y Y, et al. 2023. Molecular breeding potential of important economic traits in Jila yak[J]. China Feed, (15): 24-32.) [20] Arnott J A, Lambi A G, Mundy C M, et al.2011. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis[J]. Critical Reviews in Eukaryotic Gene Expression, 21(1): 43-69. [21] Berihulay H, Li Y F, Gebrekidan b, et al.2019. Whole genome resequencing reveals selection signatures associated with important traits in Ethiopian indigenous goat populations[J]. Frontiers in Genetics, 10: 1190. [22] Conkright M D, Canettieri G, Screaton R, et al.2003. TORCs: Transducers of regulated CREB activity[J]. Molecular Cell, 12(2): 413-423. [23] Guo J Z, Tao H I, Li P F, et al.2018. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds[J]. Scientific Reports, 8(1): 10405. [24] Igoshin A, Yudin N, Belonogova N, et al.2019. Genome‐wide association study for body weight in cattle populations from Siberia[J]. Animal Genetics, 50(3): 250-253. [25] Landgraf K, Kloeting N, Gericke M, et al.2019. The obesity susceptibility gene TMEM18 promotes adipogenesis through direct activation of PPARG signalling[J]. Diabetologia: Clinical and Experimental Diabetes and Metabolism, 62(Suppl.1): S313. [26] Liu J Q, Li J, Chen W T, et al.2021. Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses[J]. Journal of Animal Science and Biotechnology, 12: 1-13. [27] Liu J Q, Xu Z Y, Wu W C, et al.2018. Regulation role of CRTC3 in skeletal muscle and adipose tissue[J]. Journal of Cellular Physiology, 233(2): 818-821. [28] Luo W, Lin Z, Chen J, et al.2021. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. Journal of Cachexia, Sarcopenia and Muscle, 12(6): 1704-1723. [29] Tsuchida A, Yamauchi T, Kadowaki T.2005. Nuclear receptors as targets for drug development: Molecular mechanisms for regulation of obesity and insulin resistance by peroxisome proliferator-activated receptor γ, CREB-binding protein, and adiponectin[J]. Journal of Pharmacological Sciences, 97(2): 164-170. [30] Wang C, Wang H, Zhang Y, et al.2015, Genome‐wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs[J]. Molecular Ecology Resources, 15(2): 414-424. [31] Wang Y, Zhang T, Wang C.2020. Detection and analysis of genome‐wide copy number variation in the pig genome using an 80K SNP Beadchip[J]. Journal of Animal Breeding and Genetics, 137(2): 166-176.