摘要水稻(Oryza sativa)粒型是决定水稻产量、稻米外观、营养品质和商品价值的重要因素,粒型主要受遗传因素的调控。挖掘并利用水稻粒型优异基因资源并解析其调控水稻粒型的分子机制,是进一步改良稻米品质和提高水稻产量的重要策略。本研究以410份3K水稻核心种质为研究材料,于种子成熟后测量粒长、粒宽和粒厚,结合种质基因型进行水稻粒型全基因组关联分析(genome-wide association analysis, GWAS),并对定位到的粒型QTL进行候选基因以及候选基因单倍型分析,筛选这些QTL的候选基因。结果表明,GWAS共检测到5个粒型相关的QTL,分布在水稻1、3、5、7和8号染色体上,控制粒长的QTL有qGL3、qGL7和qGL8,其中qGL3与GS3共定位,qGL7与GL7共定位,而qGL8为控制粒长的新QTL位点;控制粒宽的QTL有qGW5,与GW5共定位;控制粒厚的QTL为qGT1,与d61共定位。初步筛选到qGL8的候选基因为Os08g0421800。分析粒长QTL不同单倍型在种质中的聚合情况,结果显示,qGL3、qGL7和qGL8候选基因优异单倍型聚合在'B073'、'B081'等8份种质中,这8份种质谷粒均为细长型。本研究为水稻粒型的遗传改良提供了新的种质资源和理论支撑。
Abstract:Rice (Oryza sativa) grain shape is a critical factor in determining the yield, appearance, nutritional quality, and commercial value of rice. Grain shape is primarily determined by genetic factors. It is crucial to enhance the quality and yield of rice by exploring and utilizing valuable gene resources related to rice grain shape, as well as analyzing the molecular mechanisms that regulate it. In this study, 410 3K rice core germplasms were used as research materials. After seed maturation, measurements were taken for grain length, grain width, and grain thickness. Genome-wide association analysis (GWAS) was conducted using the genotypes of the germplasm. Candidate genes and haplotypes were analyzed to screen for potential genes associated with these QTL. A total of 5 QTL related to grain shape were detected by GWAS, which were distributed on chromosomes 1, 3, 5, 7, and 8 of rice. The QTL controlling grain length were qGL3, qGL7, and qGL8. Among these, qGL3 was co-located with GS3, qGL7 was co-located with GL7, and qGL8 was a newly discovered QTL locus that controls grain length. The QTL controlling grain width was qGW5, which was co-located with GW5. The QTL controlling grain thickness was qGT1, which was co-located with d61. The candidate gene for qGL8 was Os08g0421800. The analysis involved aggregating different haplotypes of grain length QTL in germplasm. It was found that the favorable haplotypes of the candidate genes qGL3, qGL7, and qGL8 were present in 8 germplasms, including 'B073' and 'B081'. Additionally, the grains of these 8 germplasms were slender. This study provides new germplasm resources and theoretical support for enhancing the genetic improvement of rice grain shape.
[1] 段宇轩, 崔京南, 徐善斌, 等. 2023. 粳稻粒型相关性状全基因组关联分析及候选基因挖掘[J].华北农学报, 38(05): 19-28. (Duan Y X, Cui J N, Xue S B, et al.2023. Whole genome association analysis and candidate gene mining of grain type correlation in crypt japonica rice[J]. Acta Agriculturae Boreali-sinica, 38(05): 19-28.) [2] 林鸿宣, 闵绍楷, 熊振民, 等. 1995. 应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J]. 中国农业科学, 28(4): 1-7. (Lin H X, Min S K, Xiong Z M, et al.1995. Localization and Analysis of Gene Loci for Grain Shape Quantitative Traits in Indica Rice Using RFLP Mapping[J]. Chinese Agricultural Science, 28(4): 1-7.) [3] 韩政宏, 段宇轩, 徐善斌, 等. 2022. 利用CRISPR/Cas9技术敲除GS3和GS9基因改良水稻粒型性状[J]. 华北农学报, 37(02): 9-17. (Han Z H, Duan Y X, Xu S B, et al.2022. Improvement of rice grain size traits by knockout of GS3 and GS9 genes using CRISPR/Cas9 technology[J]. Acta Agriculturae Boreali-Sinica, 37(02): 9-17.) [4] 黄娟, 高利军, 李经成, 等. 2023. 利用CRISPR/Cas9技术改良三系杂交稻恢复系外观品质[J]. 西南农业学报, 36(09): 1835-1842. (Huang J, Gao L J, Li J C, et al.2023. Improvement of appearance quality of three-line hybrid rice restoration lines using CRISPR/Cas9 technology[J]. Southwest China Journal of Agricultural Sciences, 36(09): 1835-1842. [5] 李泽福, 万建民, 夏加发, 等. 2003. 水稻外观品质的数量性状基因位点分析[J]. 遗传学报, 30(3): 251-259 (Li Z F, Wan J M, Xia J F, et al.2003, Quantitative trait gene loci analysis of rice appearance quality[J]. Acta Genetica Sinica, 30(3): 251-259.) [6] 罗玉坤. 2004. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 18(2): 135-139. (Luo Y K.2004. The grain type and quality characteristics of major rice in China[J]. Chinese Journal of Rice Science, 18(2): 135-139.) [7] 毛艇, 李鑫, 刘研, 等. 2023. 聚合gs3、Pita及Pib基因创制长粒高抗稻瘟病核心粳稻种质[J]. 分子植物育种, 21(06): 1990-1998. (Mao T, Li X, Liu Y, et al.2023. Aggregation of gs3, Pita, and Pib genes to create core japonica rice germplasm with long grain and high blast resistance[J]. Molecular Plant Breeding, 21(06): 1990-1998.) [8] 邵高能, 唐绍清, 焦桂爱, 等. 2009. 稻米蒸煮品质性状的QTL定位[J]. 中国水稻科学, 23(1): 94-98. (Shao G N, Tang S Q, Xiong G A, et al.2009. QTL mapping of rice cooking quality traits[J]. Chinese Journal of Rice Science, 23(1): 94-98.) [9] 杨建昌, 王志琴, 朱庆森, 等. 1999. ABA与GA对水稻籽粒灌浆的调控[J]. 作物学报, 1999, 5(3): 341-347. (Yang J C, Wang Z Q, Zhu Q S, et al.1999. The Regulation of ABA and GA on Rice Grain Filling in Chinese Journal of Botany[J]. Acta Agronomica Sinica, 25(3): 341-347.) [10] 姚国新, 卢磊. 2007. 水稻粒重基因定位克隆研究[J]. 安徽农业科学,(27):8468+8478. (Yao G X, Lu L.2007. Mapping and Cloning of Rice Grain Weight Genes[J]. Journal of Anhui Agricultural Sciences,(27):8468+8478.) [11] 周斌, 赵正洪, 张世辉, 等. 2010. 高档优质香稻“玉针香”的选育[J]. 湖南农业科学, (16): 20-21. (Zhou B, Zhao Z H, Zhang S H, et al. 2010. Breeding of high quality fragrant rice "Yuzhenxiang"[J]. Hunan Agricultural Sciences, (16): 20-21.) [12] Aluko G, Martinez C, Tohme J, et al.2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O.glaberrima[J]. Theoretical and Applied Genetics, 109: 630-639. [13] Bai X, Luo L, Yan W, et al.2010. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7[J]. BMC Genetics, 11:16. [14] Bradbury P J, Zhang Z, Kroon D E, et al.2007. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics (Oxford, England), 23(19): 2633-2635. [15] Choi B S, Kim Y J, Markkandan K, et al.2018. GW2 functions as an E3 ubiquitin ligase for rice[J] International Journal of Molecular Sciences, 19(7): 1904. [16] Fan C, Xing Y, Mao H, et al.2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 112(6): 1164-1171. [17] Guan L R, Liu Z P, Xue R, et al.2020. Identification of a new OsBRI1 weak allelic mutant and its function in regulating seed size[J]. Bulletin of Botany, 55(03): 279-286. [18] Hao J, Wang D, Wu Y, et al.2021. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 14(8): 1266-1280. [19] He Y, Li L, Shi W, et al.2022. Florigen repression complexes involving rice CENTRORADIALIS2 regulate grain size[J]. Plant Physiology, 190(2): 1260-1274. [20] Hu J, Huang L, Chen G, et al.2021. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice[J]. Rice, 14(1): 90. [21] Hu X, Qian Q, Xu T, et al.2013. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric Gα subunit to regulate Brassinosteroid-mediated growth in rice[J]. PLOS Genetics, 9(3): e1003391. [22] Huang X H, Wei X H, Sang T, et al.2010. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 42(11), 961-7. [23] Jiang W B, Huang H Y, Hu YW, et al.2013. Brassinosteroid regulates seed size and shape in Arabidopsis[J]. Plant Physiology, 162(4)1965-1977. [24] Li Y, Fan C, Xing Y, et al.2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 43(12): 1266-1269. [25] Liu J, Chen J, Zheng X, et al.2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants, 3: 17043. [26] Liu L, Tong H, Xiao Y, et al.2015. Activation of big grain1 significantly improves grain size by regulating auxin transport in rice[J]. Proceedings of the National Academy of Sciences of the USA, 112(35): 11102-11107. [27] Mao H, Sun S, Yao J, et al.2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the USA, 107(45): 19579-19584 [28] Niu Y, Chen T, Wang C, et al.2021. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study[J]. BMC Genomics, 22(1): 602. [29] Segami S, Takehara K, Yamomoto T, et al.2017. Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.)[J]. Breeding Science, 67(4): 393-397. [30] Shomura A, Izawa T, Ebana K, et al.2008. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 40(8): 1023-1028. [31] Wan X, Weng J, Zhai H, et al.2008. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome5[J]. Genetics, 179(4): 2239-2252. [32] Wang N, Zhang W, Wang X, et al.2023. Genome-wide association study of xian rice grain shape and weight in different environments[J]. Plants, 12(13): 2549. [33] Wang W Q, Liu S J, Song S Q, et al.2015. Proteomics of seed development, desiccation tolerance, germination and vigor[J]. Plant Physiology and Biochemistry, 86: 1-15. [34] Wang W S, Mauleon R, Hu Z Q, et al.2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 557(7703): 43-49. [35] Wang X, Pang Y, Wang C, et al.2017. New candidate genes affecting rice grain appearance and milling quality detected by genome-wide and gene-based association analyses[J]. Frontiers in Plant Science, 7: 1998. [36] Wei M, Luo T, Huang D, et al.2023. Construction of high-density genetic map and QTL mapping for grain shape in the rice ril population[J]. Plants (Basel), 12(16): 2911. [37] Weng J, Gu S, Wan X, et al.2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 18(12): 1199-1209. [38] Wu F X, Luo X, Wang L Q, et al.2021. Genome-wide association study reveals the QTLs for seed storability in world rice core collections[J]. Plants, 10(4): 812. [39] Xia D, Zhou H, Liu R, et al.2018. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 11(5): 754-756. [40] Xing Y, Zhang Q.2010. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 61(1): 421-442. [41] Xu R, Duan P, Yu H, et al.2018. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 11(6): 860-873. [42] Yamamuro C, Ihara Y, Wu X, et al.2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell, 12(9): 1591-606. [43] Yang T, Gu H, Yang W, et al.2023. Artificially selected grain shape gene combinations in guangdong simiao varieties of rice (Oryza sativa L.)[J]. Rice, 16(1): 3. [44] Yang X, Zhao X, Dai Z, et al.2021. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408[J]. Plant Physiology, 186(1): 519-533. [45] Yuan H, Fan S, Huang J, et al.2017. 08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice[J]. Rice (N Y), 10(1): 25. [46] Zhai L, Zheng T, Wang X, et al.2018. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study[J]. Rice, 11(1): 13. [47] Zhang Y C, Yu Y, Wang C Y, et al.2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology, 31(9): 848-852. [48] Zhao K, Tung C W, Eizenga G C, et al.2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2(1): 467. [49] Zhou Y, Miao J, Gu H, et al.2015. Natural variations in SLG7 regulate grain shape in rice[J]. Genetics, 201(4): 1591-1599. [50] Zhou Y, Tao Y J, Zhu J Y, et al.2017. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety[J]. Rice (NY), 10(1): 34. [51] Zhu X, Gou Y, Heng Y, et al.2023. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice[J]. Plant Biotechnology Journal, 21(2): 381-390.