Correlation Analysis Between MRFs Family Gene Polymorphism and Growth Traits in Adult Nile Tilapia (Oreochromis niloticus)
ZHANG Shi-Biao1,2, CHEN Bing-Lin1,2, ZOU Zhi-Ying1,2, XIAO Wei1,2, ZHU Jing-Lin1,2, YU Jie1,2, LI Da-Yu1,2, YANG Hong1,2,*
1 Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; 2 Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
Abstract:In fish, muscle weight is a key trait reflecting growth performance. The myogenic regulatory factors (MRFs) family of genes plays an important role in muscle generation and development. This study aims to investigate the correlation between the polymorphism of MRFs family genes and the growth traits of adult Nile tilapia (Oreochromis niloticus). PCR amplification and multiple sequence alignment were performed on the coding regions of myogenic factor 5 (myf5), myf6, myogenic determination gene 1 (myod1), myod2, and myogenin (myog). A total of 26 SNPs were screened from the 5 MRFs family genes, including 7 SNPs in myf5, 8 SNPs in myf6, 6 SNPs in myod1, 2 SNPs in myod2, and 3 SNPs in myog. The correlation analysis between the SNPs and growth traits showed that the N7 (C2543T) site of myf5 was significantly related to body weight (P<0.05), and the N9 (A11440G) site of myf6 was significantly related to body weight, total length, body length, and head length (P<0.05). No other SNP significantly associated with growth traits were found in other gene. Additionally, haplotype analysis identified 3 haplotypes in myf5 significantly associated with body thickness (P<0.05) and 4 haplotypes in myf6 significantly associated with growth traits (P<0.05), while no haplotypes significantly associated with growth traits were found in the other genes. These results expand the evaluation of molecular marker applicability and identify 2 candidate markers for molecular-assisted breeding in adult Nile tilapia, providing a theoretical basis for Nile tilapia breeding and quality improvement.
[1] 陈炳霖, 肖炜, 邹芝英, 等. 2020. 两种尼罗罗非鱼GHR、IGF-Ⅰ基因启动子区及编码区多态性与生长性状的相关性分析[J]. 农业生物技术学报, 28(11): 2032-2047. (Chen B L, Xiao W, Zou Z Y, et al.2020. Correlation analysis of polymorphisms in promoter region and coding region of GHR and IGF-Ⅰ genes with growth traits of two varieties of Nile tilapia (Oreochromis niloticus)[J]. Journal of Agricultural Biotechnology, 28(11): 2032-2047.) [2] 高风英, 佟延南, 刘志刚, 等. 2024. 尼罗罗非鱼MYF6基因SNP位点筛选及其与生长性状的关联分析[J]. 农业生物技术学报, 32(2): 396-416. (Gao F Y, Tong Y N, Liu Z G, et al.2024. Screening of SNP of MYF6 gene in Nile tilapia (Oreochromis niloticus) and its association analysis with growth traits[J]. Journal of Agricultural Biotechnology, 2024, 32(2): 396-416.) [3] 雷莹, 苏胜彦, 丁敬波, 等. 2014. 背部肌肉注射含IGF2b基因慢病毒载体对鲤鱼生长的影响[J]. 西北农林科技大学学报(自然科学版), 42(7): 8-14+28.(Lei Y, Su S Y, Ding J B, et al. 2014. Effect of injecting vector containing IGF2b to dorsal muscle tissue on growth of common carp[J]. Journal of Northwest A&F University (Natural Science Edition), 42(7): 8-14+28.) [4] 李胜杰, 樊佳佳, 姜鹏, 等. 2018. 大口黑鲈HSC70-1基因多态性及其双倍型与生长性状的关联分析[J]. 南方水产科学, 14(06): 74-80. (Li S J, Fan J J, Jiang P, et al.2018. Association analysis of SNPs and diplotype of HSC70-1 gene with growth traits in largemouth bass (Micropterussalmoides)[J]. South China Fisheries Science, 14(06): 74-80.) [5] 刘宇, 肖成, 金海国, 等. 2022. 沃金黑牛GPR41基因多态性及其与不同阶段生长性状的相关性分析[J], 中国牛业科学, 48(6): 28-34. (Liu Y, Xiao C, Jin H G, et al.2022. Polymorphism of the GPR41 gene in Wokings black cattle and its correlation with growth traits at different stages[J]. China Cattle Science, 48(6): 28-34.) [6] 孟科, 张天闻, 梁鹏, 等. 2022. 绵羊MYF5基因多态性及其与生长性状的关联分析[J]. 农业生物技术学报, 30(3): 496-505. (Meng K, Zhang T W, Liang P, et al.2022. Polymorphism of MYF5 gene and its association analysis with growth traits in sheep (Ovis aries)[J]. Journal of Agricultural Biotechnology, 30(3): 496-505.) [7] 苏胜彦, 董在杰, 袁新华, 等. 2012. 3×3完全双列杂交F1不同阶段生长特点的分析[J]. 水生生物学报, 36(4): 618-625. (Su S Y, Dong Z J, Yuan X H, et al.2012. Characters of different growth stage on the F1 progeny of 3×3 full diallel cross in common carp (Cyprinus carpio L.)[J]. Acta Hydrobiologica Since, 36(4): 618-625.) [8] 谭新, 童金苟. 2011. SNPs及其在水产动物遗传学与育种学研究中的应用[J]. 水生生物学报, 35(2): 348-354. (Tan X, Tong J G.2011. SNPs and their applications in studies on genetics and breeding of aquaculture animals[J]. Acta Hydrobiologica Since, 35(2): 348-354.) [9] 佟延南, 高风英, 刘志刚, 等. 2023. 尼罗罗非鱼MYF5基因SNP位点筛选及其与不同群体生长性状的关联分析[J]. 大连海洋大学学报, 38(6): 935-946. (Tong Y N, Gao F Y, Liu Z G, et al.2023. Screening of SNP locus and association with growth traits of MYF5 gene in Nile tilapia (Oreochromis niloticus)[J]. Journal of Dalian Ocean University, 38(6): 935-946.) [10] 王文涛, 周武军, 张福平. 2024. 威宁鸡Myf5基因多态性与周龄体重的相关性研究[J]. 贵州畜牧兽医, 48(1): 9-12. (Wang W T, Zhou W J, Zhang F P.2024. Study on the correlation between Myf5 gene polymorphism and body weight at different ages in Weining chickens[J]. Guizhou Journal of Animal Husbandry&Veterinary Medicine, 48(1): 9-12.) [11] 肖成, 刘洪亮, 刘宇, 等. 2023. FoxO1基因在沃金黑牛不同生长阶段中的SNP筛选[J]. 中国畜牧杂志, 1-8. (Xiao C, Liu H G, Liu Y, et al.2023. SNP screening of the FoxO1 gene at different growth stages in Wokings black cattle[J]. Chinese Journal of Animal Science, 1-8.) [12] Bentzinger C F, Wang Y X, Rudnicki M A.2012. Building Muscle: Molecular regulation of myogenesis[J]. Cold Spring Harbor Perspectives in Biology, 4(2): a008342-a008342. [13] Bhuiyan M S A, Kim N K, Cho Y M, et al.2009. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle[J]. Livestock Science, 126(1-3): 292-297. [14] Chen B, Xiao W, Li D, et al.2024. Characterization of glucose metabolism in high-growth performance Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 580: 740317. [15] Chen B, Xiao W, Zou Z, et al.2020. Ghrelin gene single nucleotide polymorphisms and their effects on Nile tilapia (Oreochromis niloticus) growth[J]. Aquaculture Reports, 18: 100469. [16] Chen B, Xiao W, Zou Z, et al.2021. The effects of single nucleotide polymorphisms in neuropeptide Y and prepro-orexin on growth in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 543: 736974. [17] Francetic T, Li Q.2011. Skeletal myogenesis and Myf5 activation[J]. Transcription, 2(3): 109-114. [18] Gensch N, Borchardt T, Schneider A, et al.2008. Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis[J]. Development, 135(9): 1597-1604. [19] Jaser S K K, Dias M A D, Lago A D A, et al.2017. Single nucleotide polymorphisms in the growth hormone gene of Oreochromis niloticus and their association with growth performance[J]. Aquaculture Research, 48(12): 5835-5845. [20] Keenan S R, Currie P D.2019. The developmental phases of zebrafish myogenesis[J]. Journal of Developmental Biology, 7(2): 12. [21] Ott M O, Bober E, Lyons G, et al.1991. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo[J]. Development, 111(4): 1097-1107. [22] Perez É S, Duran B O S, Zanella B T T, et al.2023. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 285: 111502. [23] Rajesh M, Kamalam B S, Ciji A, et al.2019. Molecular characterisation and transcriptional regulation of muscle growth regulatory factors myogenin and myogenic factor 6 in the Trans-Himalayan cyprinid fish Schizothorax richardsonii[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231: 188-200. [24] Rihan W, Yueying Y, Qinghui F, et al.2020. Expression of myogenic regulatory factor genes in skeletal muscle satellite cells from Wuzhumuqin sheep in vitro[J]. Small Ruminant Research, 193: 106251. [25] Seale P, Bjork B, Yang W, et al.2008. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 454(7207): 961-967. [26] Singh K, Dilworth F J.2013. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors[J]. The FEBS Journal, 280(17): 3991-4003. [27] Tajbakhsh S, Buckingham M E.1995. Lineage restriction of the myogenic conversion factor myf-5 in the brain[J]. Development, 121(12): 4077-4083. [28] Vignal A, Milan D, SanCristobal M, et al.2002. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genetics Selection Evolution, 34(3): 275. [29] Wei L, Xiao W, Chen B, et al.2024. Single nucleotide polymorphisms in the MRFs gene family associated with growth in Nile tilapia[J]. Molecular Biology Reports, 51(1): 128. [30] Wyszyńska-Koko J, Pierzchała M, Flisikowski K, et al.2006. Polymorphisms in coding and regulatory regions of the porcine MYF6 and MYOG genes and expression of the MYF6 gene in m. longissimus dorsi versus productive traits in pigs[J]. Journal of Applied Genetics, 47(2): 131-138. [31] Yamamoto M, Legendre N P, Biswas A A, et al.2018. Loss of MyoD and Myf5 in skeletal muscle stem cells results in altered myogenic programming and failed regeneration[J]. Stem Cell Reports, 10(3): 956-969. [32] Yin H, Zhang Z, Lan X, et al.2011. Association of MyF5, MyF6 and MyOG gene polymorphisms with carcass traits in Chinese meat type quality chicken populations[J]. Journal of Animal and Veterinary Advances, 10(6): 704-708. [33] Zammit P S.2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell & Developmental Biology, 72: 19-32. [34] Zhang W, Behringer R R, Olson E N.1995. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies.[J]. Genes & Development, 9(11): 1388-1399.