Association Analysis of METTL23 Gene Polymorphisms with Reproductive Performance in Kele Pigs (Sus scrofa)
XIANG Jin1, WANG Chun-Yuan1, LUO Hua-Lun2, WU Yan1, YANG Suan1, TAN Yuan-Cheng1, ZHANG Yi-Yu1,*
1 Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education/Guizhou University Xiang Pig Research Institute, College of Animal Science, Guizhou University, Guiyang 550025, China; 2 Qianxinan Agricultural Products Quality and Safety Testing Center, Xingyi 562400, China
Abstract:Methyltransferase-like 23 (METTL23) plays an important role in the development of early porcine (Sus scrofa) embryos, tissues and organs. To analyze the genetic effect of SNP locus of METTL23 gene on reproductive traits, the correlation between SNP locus and reproductive trait of Kele pigs was analyzed by SPSS 22.0 software, including live piglet number, birth litter weight, birth average weight,weaning piglet number, weaning litter weight and weaning weight in this study. The results showed that 3 SNPs mutation sites of g.4804958G>T (intron 1), g.4805082C>T (exon 2) and g.4806821A>G (exon 4) were found in Kele pig METTL23 gene, and there were 3 genotypes. GT, CC and AA were the dominant genotypes of the corresponding mutation sites, and G, C and A were the dominant alleles of the corresponding mutation sites. The polymorphic information content (PIC) was moderately polymorphic (0.25<PIC<0.50). Linkage disequilibrium analysis showed that there was no strong linkage disequilibrium effect among the 3 SNPs. Correlation analysis showed that g.4804958G>T locus had significant effects on live piglets, birth litter weight and weaned piglets (P<0.05), and g.4806821A>G loci had significant effects on birth litter weight, average birth weight and weaning piglets (P<0.05). Diplotype H4H4 (GGCCGG) had significant effects on live piglets, birth litter weight, weaned piglets, weaning litter weight and average weaning weight (P<0.01). G.4805082C>T and g.4806821A>G had significant effects on the reproductive performance of Kele pigs, and the diplotype H4H4 (GGCCGG) had a very significant effect on the reproductive performance, so METTL23 could be used as an auxiliary marker for molecular breeding. This study provides a theoretical reference for pig genetics and breeding.
向进, 王春源, 罗华伦, 吴燕, 杨酸, 谭元成, 张依裕. 柯乐猪METTL23基因多态性与繁殖性能的关联性分析[J]. 农业生物技术学报, 2024, 32(7): 1577-1586.
XIANG Jin, WANG Chun-Yuan, LUO Hua-Lun, WU Yan, YANG Suan, TAN Yuan-Cheng, ZHANG Yi-Yu. Association Analysis of METTL23 Gene Polymorphisms with Reproductive Performance in Kele Pigs (Sus scrofa). 农业生物技术学报, 2024, 32(7): 1577-1586.
[1] 崔世泉, 李剑虹, 崔卫国, 等. 2007. 母猪哺乳初期的母性行为与催乳素受体基因多态性关系的初探[J]. 遗传, (01): 47-51. (Cui S Q, Li J H, Cui W G, et al. 2007. Preliminary study of the relationship between maternal behavior and prolactin receptor gene polymorphism in the early stage of lactation[J]. Genetic, (01): 47-51.) [2] 潘奕彤, 申屠璐燕, 吴玉婷, 等. 2021. METTL23基因在猪卵母细胞、早期胚胎和主要器官中的表达[J]. 浙江农业科学, 62(03): 592-597. (Pan Y T, Shentu L Y, Wu Y T, et al.2021. Expression of METTL23 genes in porcine oocytes, early embryos, and major organs[J]. Zhejiang Agricultural Science, 62(03): 592-597.) [3] 齐婧, 谭娅, 张静, 等. 2023. 柯乐猪与大白猪胴体性状、肉质性状研究及相关性分析[J]. 现代畜牧科技, (07): 1-6. (Qi J, Tan Y, Zhang J, et al. 2023. Study on carcass traits and meat quality of kelle and large white pigs[J]. Modern Animal Husbandry Science and technology, (07): 1-6.) [4] 王春源, 杨酸, 谭元成, 等. 2023. PPARα基因SNPs对关岭黄牛生长性状的影响[J]. 中国畜牧杂志, (11): 138-143. (Wang C Y, Yang S, Tan Y C, et al. 2023. Effect of PPARα gene SNPs on growth traits of Guanling yellow cattle[J]. Chinese Animal Husbandry Journal,(11): 138-143.) [5] 王丽丽, 朱祯, 李霞. 2008. 精氨酸甲基转移酶及其生物学功能研究进展[J]. 中国农学通报, (07): 39-44. (Wang L L, Zhu Z, Li X. 2008. Progress in studying arginine methyltransferases and their biological functions[J]. China Agricultural Bulletin, (07): 39-44.) [6] 杨莲. 2021. 柯乐猪与柯杂猪肠道微生物差异性及其对耐粗饲特性的影响研究[D]. 硕士学位论文, 贵州大学, 导师: 燕志宏, pp. 83. (Yang L. 2021. Study of intestinal microbiology between complex and complex pigs and its influence on crude feeding resistance[D]. Thesis for M.S., Guizhou University, Supervisor: Yan Z H, pp. 83.) [7] 杨莲, 燕志宏, 黄维江, 等. 2021. 纯种柯乐猪与巴×柯杂交猪肠道菌群结构的研究[J]. 动物营养学报, 33(03): 1359-1371. (Yang L, Yan Z H, Huang W J, et al.2021. Study of the intestinal microbiota structure of thoroughbred Kele pigs and Bko[J]. Chinese Journal of Animal Nutrition, 33(03): 1359-1371.) [8] 杨酸, 郭小江, 杨红文, 等. 2023. 柯乐猪PRLR基因多态性与繁殖性状的关联性[J]. 浙江农业学报, 35(03): 556-564. (Yang S, Guo X J, Yang H W, et al.2023. Association of PRLR gene polymorphisms and reproductive traits in Kele pigs[J]. Zhejiang Journal of Agriculture, 35(03): 556-564.) [9] 易军晖, 郭向明, 肖学珊, 等. 2004. 高度近视人群METTL4基因的单核苷酸多态分析[J]. 中国病理生理杂志, (06): 126-128. (Yi J H, Guo X M, Xiao X S, et al. 2004. Single-nucleotide polymorphic analysis of the METTL4 gene in a high myopic population[J]. The Chinese Journal of Pathophysiology, (06): 126-128.) [10] 赵春萍, 张雄, 张静, 等. 2022. 柯乐猪的肉品质和风味指标测定及相关性分析[J]. 贵州畜牧兽医, 46(01): 12-16. (Zhao C P, Zhang X, Zhang J, et al.2022. Determination and correlation analysis of meat quality and flavor indexes of Kohler pigs[J]. Guizhou Animal Husbandry and Veterinary Medicine, 46(01): 12-16.) [11] 张琪, 李娜, 于永生, 等. 2021. 松辽黑猪METTL23基因多态性及其与繁殖性状的关联分析[J]. 中国畜牧兽医, 48(12): 4530-4536. (Zhang Q, Li N, Yu Y S, et al.2021. Polymorphism of METTL23 gene and its association with reproductive traits in Songliao black pigs[J]. Animal Husbandry and Veterinary Medicine, China, 48(12): 4530-4536.) [12] Alarcón C R, Goodarzi H, Lee H, et al.2015. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 162(6): 1299-1308. [13] Almannai M, Obaid O, Faqeih E, et al.2020. Further delineation of METTL23-associated intellectual disability[J]. American Journal of Medical Genetics, 182(4): 785-791. [14] Andrade A C B, Viana J M S, Pereira H D.et al.2019. Linkage disequilibrium and haplotype block patterns in popcorn populations[J]. PLOS ONE, 14(9): e0219417. [15] Ardlie K G, Kruglyak L, Seielstad M.2002. Patterns of linkage disequilibrium in the human genome[J]. Nature reviews, Genetics, 3(4): 299-309. [16] Bedford M. T.2007. Arginine methylation at a glance[J]. Journal of Cell Science, 120(Pt 24): 4243-4246. [17] Bernkopf M, Webersinke G, Tongsook C, et al.2014. Disruption of the methyltransferase-like 23 gene METTL23 causes mild autosomal recessive intellectual disability[J]. Human Molecular Genetics, 23(15): 4015-4023. [18] Blanc R S, Richard S.2017. Arginine methylation: The coming of age[J]. Molecular Cell, 65(1): 8-24. [19] Distl O.2007. Mechanisms of regulation of litter size in pigs on the genome level[J]. Reproduction in Domestic Animals, 42(Suppl 2): 10-16. [20] Fuhrmann J, Clancy KW, Thompson PR.2015. Chemical biology of protein arginine modifications in epigenetic regulation[J]. Chemical Reviews, 115(11): 5413-5461. [21] Guccione E, Richard S.2019. The regulation, functions and clinical relevance of arginine methylation[J]. Nature Reviews Molecular Cell Biology, 20(10): 642-657. [22] Khan A, Miao Z, Umair M, et al.2020. Two cases of recessive intellectual disability caused by NDST1 and METTL23 variants[J]. Genes, 11(9): 1021. [23] Liu W W, Sun Y.2022. Epigenetics in glaucoma: A link between histone methylation and neurodegeneration[J]. The Journal of Clinical Investigation, 132(21): e163670. [24] Pan Y, Suga A, Kimura I, et al.2022. METTL23 mutation alters histone H3R17 methylation in normal-tension glaucoma[J]. The Journal of Clinical Investigation, 132(21): e153589. [25] Serrote C M L, Reiniger L R S, Silva K B, et al.2020. Determining the polymorphism information content of a molecular marker[J]. Gene, 726: 144175. [26] Slatkin M.2008. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 9(6): 477-485. [27] Wan Y, Qu K, Ouyang Z, et al.2012. Genome-wide measurement of RNA folding energies[J]. Molecular Cell, 48(2): 169-181. [28] Wei H H, Fan X J, Hu Y, et al.2021. A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA splicing and translation[J]. Science Bulletin, 66(13): 1342-1357. [29] Wu X, Zhang Y.2017. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nature Reviews[J]. Genetics, 18(9): 517-534. [30] Zhao X, Yang Y, Sun B F, et al.2014. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Research, 24(12): 1403-1419.