Tissue Expression, Polymorphism of SIRT1 Gene in Guizhou White Goat(Capra hircus) and Its Association with Serum Lipid Metabolism Index
HUI Mao-Mao1,2, CHEN Xiang1,2,*, RUAN Yong1,2, LI Shi-Jun1,2, ZHOU Zhi-Nan1,2, YANG Pei-Fang1,2, ZHANG Yan1,2
1 Key Laboratory of Genetic Breeding and Reproduction of Plateau Mountain Animals, Ministry of Education, Guizhou University/Key Laboratory of Animal Genetic Breeding and Reproduction, Guizhou Province, Guiyang 550025, China; 2 School of Animal Science, Guizhou University, Guiyang 550025, China
Abstract:Silent mating type information regulation 2 homolog 1 (SIRT1) is involved in lipid mobilization through deacetylation and affects lipid metabolism. To investigate the polymorphism of SIRT1 gene in Guizhou white goats (Capra hircus) and to screen the SNP loci associated with serum lipid metabolism indexes in Guizhou white goats, this study conducted bioinformatics analysis of SIRT1, and analyzed the expression of SIRT1 gene in various tissues and the association of SNPs with serum cholesterol, triglycerides and free fatty acids. The results showed that SIRT1 gene was expressed in 11 tissues, among which the expression in liver and longest dorsal muscle was extremely significant higher than other tissues (P<0.01); 11 mutation sites were detected in the SIRT1 gene of Guizhou white goat, all of which were located on exons 1 and 6; genetic analysis revealed that the PIC of the 7 SNP loci (g.21206621T>C, g.21206920T>G, g.21207071A>C, g.21215871G>A, g.21216960T>C, g.21217717T>C, g.21217777A>G) were all at moderate polymorphic levels. g.21207042C>T and g.21217404T>C mutant loci population genetic balance deviated from Hardy-Weinberg equilibrium (P<0.01). Linkage disequilibrium analysis showed that g.21206621T>C, g.21206920T>G, g.21207071A>C, g.21215871G>A, g.21216960T>C, g.21217717T>C, g.21217777A>G, g.21217777A>G sites, g.21207042C>T, g.21217404T>C sites had a strong linkage disequilibrium effect with each other; bioinformatics analysis showed that the protein had the molecular formula C3514H5530N968O1153S26, a non-transmembrane protein with 3 N-glycosylation sites, and the secondary and tertiary structures were mainly irregular curl. The free energy of g.21206920T>G, g.21207071A>C, g.21216060C>A and g.21216960T>C sites was unchanged after mutation, while all other sites were changed. Association analysis revealed that the cholesterol, triglyceride and free fatty acid contents at the g.21206920T>G and g.21217777A>G loci differed significantly (P<0.05) between genotypes; the cholesterol and free fatty acid contents at the g.21206621T>C, g.21216960T>C and g.21217717T>C loci differed significantly (P<0.05) between genotypes. Triglyceride and free fatty acid contents at the g.21207071A>C locus differed significantly (P<0.05) between genotypes; free fatty acid contents at the g.21215871G>A locus differed significantly (P<0.05) between genotypes. This study speculates that SIRT1 gene can be used as a candidate molecular marker for fat metabolism and deposition in white goats in Guizhou, and clarifies the loci related to fat-related metabolic indexes regulated by SIRT1 gene to provide theoretical reference for carrying out genetic markers in goats.
[1] 惠茂茂, 陈祥, 敖叶, 等. 2021. 黔北麻羊PPP3CA基因克隆、生物信息学分析及不同组织表达研究[J]. 中国畜牧杂志, 57(10): 84-88; 95.(Hui M M, Chen X, Ao Y, et al. 2021. Cloning, bioinformatics analysis and expression study of PPP3CA gene in Qianbei sheep[J]. Chinese Journal of Animal Science, 57(10): 84-88; 95.) [2] 李碧侠, 赵芳, 任守文, 等. 2012. 去乙酰化酶SIRT1在猪不同组织中的表达规律性分析[J]. 南方农业学报, 43(11): 1765-1768. (Li B X, Zhao F, Ren S W, et al.2012. Regularity of expression of deacetylase SIRT1 in different tissues of pigs[J]. Southern Journal of Agriculture, 43(11): 1765-1768.) [3] 李杰章, 谭光辉, 吴磊, 等. 2020. 三穗鸭ITPR1基因SNPs鉴定及其与蛋壳品质性状的关联性[J]. 农业生物技术学报, 28(03): 455-464. (Li J Z, Tan G H, Wu L, et al.2020. Identification of SNPs in ITPR1 gene and its association with eggshell quality traits in Sansui ducks[J]. Journal of Agricultural Biotechnology, 28(03): 455-464.) [4] 刘雪莲. 2018. 鸡SIRT1基因的表达规律及其多态性研究[D]. 河南农业大学, 硕士学位论文, 导师: 田亚东, pp: 12-22. (Liu X L.2018. Study on the expression pattern of chicken SIRT1 gene and its polymorphism[D]. Henan Agricultural University, Thesis for M.S., Supervisor: Tian Y D, pp: 12-22.) [5] 毛月姣, 李国勤, 陈晓燕, 等. 2019. 白羽王鸽促卵泡素受体基因多态性与产蛋量关联分析[J]. 农业生物技术学报, 27(08): 1452-1459. (Mao Y J, Li G Q, Chen X Y, et al.2019. Association analysis of follicle stimulating hormone receptor gene polymorphism and egg production in white king pigeons[J]. Journal of Agricultural Biotechnology, 27(08): 1452-1459.) [6] 欧秀琼, 李睿, 张晓春, 等. 2021. 猪肌纤维性状形成和肌内脂肪沉积的遗传机制[J].中国畜牧兽医, 48(03): 925-931. (Ou X Q, Li R, Zhang X C, et al.2021. Genetic mechanisms of muscle fiber trait formation and intramuscular fat deposition in pigs[J]. China Veterinary Animal Husbandry, 48(03): 925-931.) [7] 潘洋洋, 景炅婕, 乔利英, 等. 2015. SIRT1基因在绵羊不同组织器官中的差异性表达研究[J]. 山西农业大学学报(自然科学版), 35(02): 113-118. (Pan Y Y, Jing G J, Qiao L Y, et al.2015. Differential expression of SIRT1 gene in different tissues and organs of sheep[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 35(02): 113-118.) [8] 孙善发, 唐继高. 1994. 贵州白山羊产肉性能的研究[J]. 四川畜牧兽医, (04): 23-25. (Sun S F, Tang J G. 1994. Study on the meat production performance of white goats in Guizhou[J]. Sichuan Animal Husbandry and Veterinary Medicine, (04): 23-25.) [9] 谭光辉, 吴磊, 李杰章, 等. 2020. 三穗鸭ITPR2基因组织表达、功能预测及其SNPs对蛋壳品质的影响[J]. 农业生物技术学报, 28(04): 720-730. (Tan G H, Wu L, Li J Z, et al.2020. Tissue expression and functional prediction of ITPR2 gene and the effect of its SNPs on eggshell quality in Sansui ducks[J]. Journal of Agricultural Biotechnology, 28(04): 720-730.) [10] 王燕新, 廖圆圆, 阿依木古丽, 等. 2020. 绵羊脂肪代谢与调控机理研究进展[J]. 黑龙江畜牧兽医, (17): 33-36. (Wang Y X, Liao Y Y, Aimu G L, et al. 2020. Research progress on fat metabolism and regulation mechanism in sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, (17): 33-36.) [11] 王伟, 滚双宝, 王鹏飞, 等. 2020. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 32(09): 1564-1573. (Wang W, Gun S B, Wang P F, et al.2020. Tissue expression and important target gene screening of porcine miR-204[J]. Zhejiang Journal of Agriculture, 32(09): 1564-1573.) [12] 杨光, 陈小玲, 崔玉林, 等. 2012. 贵州白山羊品种调查研究报告//[C] . 中国羊业进展论文集. 中国畜牧业协会, 5: 91-95. (Yang G, Chen S, Cui Y L, et al.2012. Research report on white goat breeds in Guizhou//[C]. Proceedings of the Chinese Sheep Industry Progress. China Animal Husbandry Association, 5: 91-95.) [13] 殷实, 秦文昌, 王斌, 等. 2020. 牦牛SIRT1基因的克隆及其在不同发育阶段睾丸中的表达[J]. 华北农学报, 35(04): 203-210. (Yin S, Qin W C, Wang B, et al.2020. Cloning of SIRT1 gene and its expression in testes of yak at different developmental stages[J]. Journal of North China Agriculture, 35(04): 203-210.) [14] 赵涛涛, 赵霞, 景旭斌, 等. 2012. 雷帕霉素靶蛋白(mTOR)信号通路参与沉默信息调节因子1 (Sirt1)抑制小鼠脂肪沉积[J]. 农业生物技术学报, 20(04): 404-410. (Zhao T T, Zhao X, Jing X B, et al.2012. The mTOR signaling pathway is involved in silencing information regulator 1 (Sirt1) to inhibit fat deposition in mice[J]. Journal of Agricultural Biotechnology, 20(04): 404-410.) [15] Cheng H L, Mostoslavsky R, Saito S, et al.2003. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proceedings of the National Academy of Sciences of the USA, 100(19): 10794-10799. [16] Figarska S M, Vonk J M, Boezen H M.2013. SIRT1 polymorphism, long-term survival and glucose tolerance in the general population[J]. PLOS ONE, 8(3): e58636. [17] Gui L S, Raza S H A, Sun Y G, et al.2019. Detec‐tion of polymorphisms in the promoter of bovine SIRT1 gene and their effects on intramuscular fat content in Chinese indigenous cattle[J]. Gene, 700: 47-51. [18] Gui L S, Raza S H A, Zhou L, et al.2020. Association between single nucleotide polymorphisms in SIRT1 and SIRT2 loci and growth in Tibetan sheep[J]. Animals, 10(8): 1362. [19] Hisahara S, Chiba S, Matsumoto H, et al.2008. Histone deacety‐lase SIRT1 modulates neuronal differentiation by its nuclear translocation[J]. Proceedings of the National Academy of Sciences of the USA, 105(40): 15599-15604. [20] Homayoun V, Scott K D, Elinor N E, et al.2001. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase[J]. Cell, 107(2): 14-159. [21] Hung M W, Wu C W, Kokubu D, et al.2019. ε -Viniferin is more effective than resveratrol in promoting favorable adipocyte differentiation with enhanced adiponectin ex‐pression and decreased lipid accumulation[J]. Food Science and Technology Research, 25(6): 817-826. [22] Jadwiga P, Małgorzata W, Maria R Z, et al.2009. Serum cortisol concentration in patients with major depression after treatment with clomipramine[J]. Pharmacological Re‐ports, 61(4): 604-611. [23] Jia Z W, Yang X Y, Liu K.2021.Treatment of cattle oocytes with C-type natriuretic peptide before in vitro matura‐tion enhances oocyte mitochondrial function[J]. Animal Reproduction Science, 225: 106685. [24] Lagouge M, Argmann C, Gerhart-Hines Z, et al.2006. Resveratrol im‐proves mitochondrial function and protects against meta‐bolic disease by activating SIRT1 and PGC-1α[J]. Cell, 127(6): 1109-1122. [25] Li Q, Li H W, Ning K, et al.2012. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma[J]. Cell, 150(3): 620-632. [26] Li X.2012. SIRT1 and energy metabolism[J]. Acta Biochimi‐ca et Biophysica Sinica, 45(1): 51-60. [27] Lu Y L, Lin S Y, Fang S U, et al.2017. Hot-water extracts from roots of Vitis thunbergii var. taiwaniana and identified ε-viniferin improve obesity in high-fat diet-induced mice[J]. Journal of Agrioultural and Food Chemistry, 65(12): 2521-2529. [28] Orioli D, Dellambra E.2018. Epigenetic regulation of skin cells in natural aging and premature aging diseases[J]. Cells, 7(12): 268. [29] Purushotham A, Schug T T, Xu Q, et al.2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J]. Cell Metabolism, 9(4): 327-338. [30] Shan T Z, Ren Y, Wu T, et al.2009. Regulatory role of Sirt1 on the gene expression of fatty acid-binding protein 3 in cultured porcine adipocytes[J]. Journal of Cellular Bio‐chemistry, 107(5): 984-991. [31] Sin T K, Yung B Y, Siu P M.2015. Modulation of SIRT1-foxo1 signaling axis by resveratrol: Implications in skel‐etal muscle aging and insulin resistance[J]. Cellular Physiology and Biochemistry, 35(2): 541-552. [32] Tontonoz P, Spiegelman B M.2008. Fat and beyond: The di‐verse biology of PPARgamma[J]. Annual Review of Biochemistry, 77(1): 289-312. [33] Zhao C Z, Jiang W, Zhu Y Y, et al.2022. Highland barley monascus purpureus went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcohol‐ic fatty liver disease by regulating lipid metabolism in golden hamsters[J]. Journal of Ethnopharmacology, 286: 114922.