Abstract:Long peduncle varieties of melon (Cucumis melo) are beneficial to large-scale production and mechanized harvesting. In present study, long peduncle melon '1244' and short peduncle melon 'MS-5' were used to make crossing and constructed F2 segregation population, using specific locus amplified fragment sequencing sequencing (SLAF-seq) technology to construct melon genetic map, combing with SSR molecular markers, to detect fruit peduncle length (fpl) QTL locus. The results showed, a genetic map of 12 linked melon populations, with 10 595 markers were constructed, the total distance was 1 383.88 cM and the average distance between the markers was 0.13 cM; melon peduncle length was controlled by 2 pairs of main genes, fpl1.1 was located on chromosome 1, the phenotypic contribution rate was 12.2%, QTL candidate interval was between 57 524 and 270 836 in melon scaffold00060, located between CMSSR05887 and CMSSR05892; fpl8.1 was located on chromosome 8, the phenotypic contribution rate was 13.2%, QTL candidate interval was between 94 748 and 105 498 in melon scaffold00058, located between CMSSR20549 and CMSSR20495. The results provide a theoretical basis for the study of melon molecular marker assisted selection breeding and melon mechanized harvesting.
戴冬洋, 范磊, 曾双, 王岭, 盛云燕, 李正洲, 张帆. 甜瓜SLAF遗传连锁图谱构建和果柄长度主效QTL定位[J]. 农业生物技术学报, 2021, 29(4): 656-662.
DAI Dong-Yang, FAN Lei, ZENG Shuang, WANG Ling, SHENG Yun-Yan, LI Zheng-Zhou, ZHANG Fan. Construction of SLAF Genetic Linkage Map and Mapping of Major QTL for Peduncle Length in Melon (Cucumis melo). 农业生物技术学报, 2021, 29(4): 656-662.
[1] 陈凤真. 2011. 西葫芦果柄长主基因-多基因混合遗传分析[J]. 安徽农业科学, 39(12): 6988-6990. (Chen F Z.2011. Hybrid genetic analysis of stem length major gene and polygene in zucchini fruit[J]. Anhui Agricultural Science, 39(12): 6988-6990) [2] 崔竣杰, 程蛟文, 谭澍, 等. 2014. 丝瓜果长及果柄长的遗传规律分析[J]. 广东农业科学, 41(08): 52-56. (Cui J J, Cheng J W, Tan S, et al.2014. Genetic analysis of fruit length and stem length of Luffa[J]. Guangdong Agricultural Science, 41(08): 52-56) [3] Curry E A, 吴瑗. 1984. 普洛马林或GA_3能增加PP_(333)处理过的元帅苹果树之果实高度、果柄长度和叶面积[J]. 国外农学(果树), 01: 47-48. (Curry E A, Wu Y.1984. Pullulan or GA-3 can increase the fruit height, petiole length and leaf area of Marshal apple trees treated with PP Fu (333)[J]. Foreign Agronomy (Fruit Trees), 01: 47-48) [4] 范磊. 2020. 甜瓜果柄长度QTL位点的初步分析[D]. 硕士学位论文, 黑龙江八一农垦大学, 导师: 盛云燕, 王迪, pp. 12-14. (Fan L.2020. Preliminary analysis of QTLs for fruit stalk length in Melon[D]. Thesis for Master, Heilongjiang Bayi Agricultural Reclamation University, Supervisor: Sheng Y Y, Wang D, pp. 12-14.) [5] 马生健, 刘耀光. 2018. 酵母双杂诱饵表达载体pGBKT7-S1-G/pGBKT7-S1-J的构建[J]. 分子植物育种, 16(21):7032-7037. (Ma S J, Liu Y G.2018. Construction of expression vector pgbkt7-s1-g / pgbkt7-s1-j of yeast two hybrid bait[J]. Molecular Plant Breeding, 16(21): 7032-7037) [6] 齐振宇, 李俊星, 邹晓霞,等. 2015. 甜瓜株型性状的遗传分析[J]. 农业生物学报, 23(03): 302-310. (Qi Z Y, Li J X, Zou X X, et al.2015. Genetic analysis of plant type characters of muskmelon[J]. Journal of Agricultural Biotechnology, 23(03): 302-310) [7] 苏小俊, 徐海, 高军, 等. 2009. 普通丝瓜果实性状的遗传分析[J]. 江苏农业学报, 25(05): 1112-1118. (Su X J, Xu H, Gao J, et al.2009. Genetic analysis of fruit characters of Luffa[J]. Journal of Jiangsu Agriculture, 25(05): 1112-1118) [8] 谭炎宁, 余东, 盛夏冰,等. 2020. SLAF-seq BSA定位水稻黄叶转绿基因grc2的效果研究[J]. 农业生物技术学报, 28(03):381-388. (Tan Y N, Yu D, Sheng X B, et al.2020. Study on the effect of SLAF-seq BSA on the location of grc2 gene in yellow leaf of rice[J]. Journal of Agricultural Biotechnology, 28(03): 381-388) [9] 王迪. 2015. MADS盒基因NtSVP调控烟草花柄发育的分子机制研究[D]. 博士学位论文, 中国农业科学院, 导师: 毛龙, pp. 28-44. (Wang D.2015. Study on the molecular mechanism of NtSVP of MADS box gene regulating the development of tobacco flower stalk[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Mao L, pp. 28-44.) [10] 熊姜玲. 2017. 甜瓜株型性状的遗传分析与分子标记[D]. 硕士学位论文, 中国农业科学院, 导师: 徐永阳, pp. 7-29. (Xiong J L.2017. Genetic analysis and molecular markers of plant type traits of muskmelon[D]. Thesis for Master, Chinese Academy of Agricultural Science, Supervisor: Xu Y Y, pp. 7-29.) [11] 杨森要, 刘海英, 高路银, 等. 2020. 甜瓜侧枝长度QTL定位及候选基因预测[J]. 农业生物技术学报, 28(04): 605-615. (Yang S Y, Liu H Y, Gao L Y, et al.2020. QTL mapping and candidate gene prediction of melon lateral branch length[J]. Journal of Agricultural Biotechnology, 28(04): 605-615) [12] 张红, 吴海波, 李寐华, 等. 2015. 基于Super-BSA技术开发甜瓜含糖量和酸度性状的功能性分子标记[J]. 中国瓜菜,28(06): 21-25. (Zhang H, Wu H B, Li M H, et al.2015. Super-BSA-based development of functional molecular markers of sugar content and acidity of melon[J]. Chinese Melon and Vegetable, 28(06): 21-25.) [13] 赵光伟, 熊姜玲, 贺玉花, 等. 2017. 甜瓜株型相关性状研究进展[J]. 中国瓜菜, 30(12): 1-3, 8. (Zhao G W, Xiong J L, He Y H, et al.2017. Research progress of melon plant type related characters[J]. Chinese Melon and Vegetable, 30(12): 1-3, 8.) [14] 赵咫云. 2006. 黄瓜果柄性状的QTL定位[D]. 硕士学位论文, 东北农业大学, 导师: 秦智伟, pp. 27-41. (Zhao Z Y.2006. QTL mapping for tedicel genein in cucumber[D]. Thesis for Master, Northeast Agricultural University, Supervisor: Qin Z W, pp. 27-41.) [15] Bowman E S, Botstein D.1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 121(1): 185-199. [16] Chen Y, Song X H,Guo Y Yet al.2020. Stalk length should be considered for storage quality of broccoli heads based on the investigation of endogenous hormones metabolism[J]. Scientia Horticulturae, 267: 109338). [17] Douglas S J, Chuck G, Dengler R E, et al.2002. KNATI and ERECTA regulate inflorescence architecture in Ararbidopsis[J]. Plant Cell, 14(3):547-558. [18] Garcia-Mas J, Benjak A, Sanseverino W, et al.2012. The genome of melon (Cucumis melo L.)[J]. Proceedings of the National Academy of Sciences of the USA, 109(29): 11872-11877. [19] Islam M R, Hossain M R, Kim H T, et al.2019. Development of molecular markers for detection of acidovorax citrulli strains causing bacterial fruit blotch disease in melon[J]. International Journal of Molecular Sciences, 20(11): 2715. [20] Pan Y, Chen X Q, XIE H, et al.2015. A maize bundle sheath defective mutation mapped on chromosome 1 between SSR markers umc1395 and umc1603[J].Journal of Integrative Agriculture, 14(10): 1949-1957. [21] Wang Y, Jia H M, Shen Y T, et al.2020. Construction of an anchoring SSR marker genetic linkage map and detection of a sex-linked region in two dioecious populations of red bayberry[J]. Horticulture Research, 7: 53. [22] Wei Q Z, Wang W H, Hu T H, et al.2020. Construction of a SNP-based genetic map using SLAF-seq and QTL analysis of morphological traits in eggplant[J]. Frontiers in Genetics, 11: 178. [23] Wen G, Dang J B, Xie Z Y, et al.2020. Molecular karyotypes of loquat (Eriobotrya japonica) aneuploids can be detected by using SSR markers combined with quantitative PCR irrespective of heterozygosity[J]. Plant Methods, 16(1): 22. [24] Zhang H, Yi H, Wu M, et al.2016.Mapping the flavor contributing traits on "Fengwei Melon" (Cucumis melo L.) chromosomes using parent resequencing and super bulked-segregant analysis[J]. PLOS ONE, 11(2): e0148150. [25] Zhang S R, Li B, Chen Y, et al.2020. Molecular-assisted distinctness and uniformity testing using SLAF-sequencing approach in soybean[J]. Genes, 11(2): 175. [26] Zhou F, Liu Y, Liang C B, et al.2018. Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq)[J]. Breeding Science, 68(5): 596-605. [27] Zhu H,Guo L,Song P,Luan F,Hu J,Sun X,Yang L.2016. Development of genome-wide SSR markers in melon with their cross-species transferability analysis and utilization in genetic diversity study[J]. Molecular Breeding, 36(11): 153.