Genetic Relationship Analysis and Fingerprint Construction of Potato(Solanum tuberosum) Germplasm Resources
WANG Peng*, LI Fang-Di*, GUO Tian-Shun, DOU Jun-Huan, XIE Wei-Qing, LUO Zhao-Xia, QI Xiao-Dong, YANG Chen, ZHAO Zhong-Liang, SONG Yi, LV Tai**
Tianshui Institute of Agricultural Sciences/National Potato Industrial Technology System of Tianshui Potato Comprehensive Experimental Station, Tianshui 741001, China
Abstract:Since the start of the development strategy of potato staple food in China, breeding of new varieties of main grain potato has become another new goal of breeding. In this study, on the basis of morphological identification, the genetic relationship of 99 potato (Solanum tuberosum) varieties (lines) was studied by SSR marker technology. 32 pairs of SSR primers with high polymorphism index were screened and the tested materials were amplified by SSR analysis. On the basis of 12 morphological traits, 99 potato germplasms were cluster analyzed according to UPGMA (unweighted pair group method analysis) based on Euclidean distance. Morphological cluster results showed that the tested materials were divided into 2 categories at a Euclidean distance of 6.79. ClassⅠcontained 90 materials, accounting for 91 % of the tested materials; Category Ⅱ contained 9 materials including Lishu6, Qingshu2, Red rose, 1025, Dongnong310, Ganguzi, Zhongshu 21, Yunshu 606, Foreign 2. SSR analysis showed that a total of 202 isometric points were detected in 32 pairs of SSR primers, and the polymorphism ratio reached to 100 %. The genetic similarity coefficients (GS) of the tested materials were 0.627~0.926. When GS was 0.627, the tested materials were grouped into 2 categories. There were 27 genotypes in the first category, accounting for 27 % of the tested materials; 72 genotypes in the second category, accounting for 73%; in this group, the 2 varieties of Lishu6 and Huaen1 were separated separately which had larger genetic differences from other genotypes. At the GS 0.637, Kondor, Mira and Kexin22 were separated separately from the other 70 materials. The results of morphological and SSR clustering showed that the genetic difference of potato varieties in the same incubated unit was small. Analyzing the clarity of amplified bands, the number of polymorphic bands and the repeatability of primers, a total of 6 pairs of SSR core primers STI005, STI022, STI024, STI041, SSR223 and STG0016 were identified for constructing the fingerprint profiles of 99 materials. Combining these 6 pairs of core primers, 99 varieties could be distinguished completely. According to STI005 / STI024/STG0016/SSR223/STI022/ STI041, the fingerprints of 99 varieties were constructed. The results showed that the cluster analysis of morphological markers and SSR markers were consistent in the group division and genetic background, and the differences of morphological traits could reflect the differences of gene level to some extent. This study provides a reference for the identification of potato varieties and the selection of excellent hybrid combinations.
[1] 段绍光, 金黎平, 李广存, 等. 2017. 马铃薯品种遗传多样性分析[J]. 作物学报, 43(5): 718-729. (Duan S G, Jin L P, Li G C, et al.2017. Genetic diversity analysis of potato varieties[J]. Acta Agronomica Sinica, 43(5): 718-729) [2] 段绍光, 金黎平, 谢开云, 等. 2003. 分子标记及其在马铃薯遗传育种中的应用[J]. 种子, 5: 100-103. (Duan S G, Jin L P, Xie K Y, et al.2003. Molecular markers and their application in potato genetic breeding[J]. Seeds, 5: 100-103.) [3] 段艳凤. 2009. 中国马铃薯主要育成品种SSR指纹图谱构建与遗传关系分析[D]. 硕士学位论文, 中国农业科学院, 导师: 金黎平, pp: 1-68. (Duan Y F.2009. Construction of fingerprinting and analysis of genetic relationship with SSR markers for main potato cultivars (Solanum tuberosum L.) in China[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Jin L P, pp: 1-68.) [4] 段艳凤, 刘杰, 卞春松, 等. 2009. 中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析[J]. 作物学报, 35(8): 1451-1457. (Duan Y F, Liu J, Bian C S, et al.2009. Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum tuberosum L.) in China[J]. Acta Agronomica Sinica, 35(8): 1451-1457.) [5] 李建武, 文国宏, 李高峰, 等. 2017. 甘肃省主栽马铃薯品种的SSR遗传多样性分析[J]. 分子植物育种, 15(5): 1951-1962. (Li J W, Wen G H, Li G F, et al.2017. SSR analysis of genetic diversity for leading potato varieties in Gansu province[J]. Molecular Plant Breeding, 15(5): 1951-1962.) [6] 李先平, 王冬冬, 陈秀华, 等. 2012. SSR分子标记分析彩色马铃薯品种间的遗传关系[J]. 东北农业大学学报, (7): 61-69. (Li X P, Wang D D, Chen X H, et al. 2012. Genetic diversity research of color potato cultivars by SSR molecular markers[J]. Journal of Northeast Agricultural University, (7): 61-69.) [7] 刘福翠, 谭学林, 郭华春. 2004. 云南省马铃薯品种资源的RAPD分析[J]. 西南农业学报, 2: 200-204. (Liu F C, Tan X L, Guo H C.2004. RAPD analysis of potato varieties resources in Yunnan province[J]. Southwest China Journal of Agricultural Sciences, 2: 200-204.) [8] 刘喜才, 张丽娟. 2006. 马铃薯种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 51-73. (Liu X C, Zhang L J.2006. Potato germplasm resource description specification and data standard[M]. Beijing: China Agricultural Press, 51-73) [9] 吕志华, 郭华春. 2018. RSAP、SSR和SRAP分析马铃薯遗传多样性的应用比较[J]. 基因组学与应用生物学, 37(06): 2544-2550. (Lv Z H, Guo H C.2018. Comparison of genetic diversity analysis by RSAP, SSR and SRAP markers in potato[J]. Genomics and Applied Biology, 37(06): 2544-2550.) [10] 单友蛟. 2010. 二倍体马铃薯SSR遗传图谱的构建及若干农艺性状的QTLs定位分析[D]. 硕士学位论文, 中国农业科学院, 导师: 金黎平, pp. 1-60. (Shan Y J.2010. Construction of genetic map by SSR markers and QTLs analysis of some agronomic traits in diploid potato[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Jing L P, pp. 1-60.) [11] 沈浩, 刘登义. 2001. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3): 5-7. (Shen H, Liu D Y.2001. Overview of genetic diversity[J]. Journal of Biology, 18(3): 5-7.) [12] 时启冬, 石瑛, 李欣. 2014. 东北地区部分马铃薯品种遗传多样性的SSR分析[J].中国农学通报, 30(21): 240-245. (Shi Q D, Shi Y, Li X.2014. Genetic diversity analysis of part of the potato varieties in northeast region by SSR marker[J]. Chinese Agricultural Bulletin, 30(21): 240-245.) [13] 宋晓燕, 张春芝, 李颖, 等. 2016. 二倍体马铃薯栽培品种遗传多样性的SSR标记分析[J]. 园艺学报, 43(11): 2266-2276. (Song X Y, Zhang C Z, LI Y, et al.2016. SSR Analysis of genetic diversity among 192 diploid potato cultivars[J]. Acta Horticulturae Sinica, 43(11): 2266-2276.) [14] 王鹏, 李芳弟, 郭天顺, 等. 2019. SSR标记马铃薯育成品种的遗传多样性分析[J]. 中国马铃薯, 33(05): 257-266. (Wang P, Li F D, Guo T S, et al.2019. Analysis of genetic diversity for potato (Solanum tuberosum L.) varieties using SSR markers[J]. Chinese Potato Journal, 33(05): 257-266.) [15] 王若秋, 赵朋, 王冬冬. 2018. 基于SSR标记的彩色马铃薯亲缘关系分析及指纹图谱构建[J]. 西北植物学报, 38(02): 249-257. (Wan R Q, Zhao P, Wang D D, et al.2018. Genetic relationship analysis and fingerprint profile construction of pigmented potato based on SSR markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 38(02): 249-257.) [16] 吴立萍, 吕典秋, 姜丽丽. 2017. 俄罗斯马铃薯种质资源遗传多样性的SSR分析[J]. 分子植物育种, 15(10): 4047-4053. (Wu L P, Lv D Q, Jiang L L, et al.2017. SSR analysis on genetic diversity of Russian potato germplasm resources[J]. Molecular Plant Breeding, 15(10): 4047-4053.) [17] 杨鸿祖. 1978. 我国马铃薯生产事业的历史概况[J]. 乌盟农业科技, 2(1): 1-52. (Yang H Z.1978. Historical overview of potato production in China[J]. Wumeng Agricultural Science and Technology, 2(1): 1-52.) [18] 殷丽琴, 彭云强, 付绍红, 等. 2016. 基于ISSR标记的彩色马铃薯遗传多样性分析及指纹图谱构建[J]. 西南农业学报, 29(01): 20-25. (Yin L Q, Peng Y X, Fu S H, et al.2016. Genetic diversity and DNA fingerprint of pigmented potato (Solanum tuberosum L.) based on ISSR markers[J]. Southwest China Journal of Agricultural Sciences, 29(01): 20-25.) [19] 赵永秀, 高茜, 孙淑英, 等. 2016. 马铃薯不同品种(系)遗传多样性的ISSR分析[J]. 分子植物育种, 14(12): 3430-3435. (Zhao Y X, Gao Q, Sun S T, et al.2016. ISSR analysis on genetic diversity of different varieties (Lines) in Solanum tuberosum L.[J]. Molecular Plant Breeding, 14(12): 3430-3435.) [20] Anoumaa M, Yao N K, Kouam E B, et al.2017. Genetic diversity and core collection for potato (Solanum tuberosum L.) cultivars from Cameroon as revealed by SSR markers[J]. American Journal of Potato Research, 94(4): 449-463. [21] Cadima Fuentes X, van Treuren R, Hoekstra R, et al.2016. Genetic diversity of Bolivian wild potato germplasm: Changes during ex situ conservation management and comparisons with resampled in situ populations[J]. Genetic Resources and Crop Evolution, 19: 1-14. [22] de Galarreta J I R, Barandalla L, Rios D J, et al.2011.Genetic relationships among local potato cultivars from Spain using SSR markers[J]. Genetic Resources and Crop Evolution, 58(3): 383-395. [23] Duan Y F, Liu J, Bian C C, et al.2009. Construction of fingerprinting and analysis of genetic diversity with SSR markers for eighty-eight approved potato cultivars (Solanum teberosum L.) in China[J]. Acta Agronomica Sinica, 35(8): 1451-1457. [24] Duan Y F, Liu J, Jin L P, et al.2019. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China[J]. American Journal of Potato Research, 96(1): 21-32. [25] Sharma V, Nandineni M R.2014. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems[J]. Molecular Phylogenetics and Evolution, 73(2014): 10-17. [26] Spanoghe M, Marique T, Rivière J, et al.2015. Investigation and development of potato parentage analysis methods using multiplexed SSR fingerprinting[J]. Potato Research, 58(1): 43-65. [27] Stephenson P, Edwards K, Melzer S, et al.2001. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: Towards an SSR-based molecular genetic map of cassava[J]. Theoretical & Applied Genetics, 102(1): 21. [28] Zhang Y F, Jung C S, de Jong W S.2009. Genetic analysis of pigmented tuber flesh in potato[J]. Theoretical & Applied Genetics, 119(1): 143-150.