Research Advances on Transcriptomics in Cattle and Sheep Mastitis Caused by Pathogenic Bacteria
LI Tao-Tao1, 2, ZHAO Xing-Xu3, MA You-Ji1, 2, *
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Engineering Laboratory of Sheep Breeding Biotechnology, Minqin 733300, China; 3 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract:The mastitis is one of the most common diseases mainly caused by pathogenic microorganisms for female mammals, especially in cattle and sheep, and also has long been focused highly by researchers in the field concerned. Under the background that mastitis cannot be effectively treated with conventional approaches because of its complexity in the pathogenesis, the rising of omics technologies including transcriptomics provide good technology platforms and research ideas for investigating pathogenic mechanism of pathogens and resistant mechanism of host during mastitis. In this paper, the recent progresses in research on the application of transcriptomics in cattle and sheep mastitis were reviewed. This review offers references for the in-depth study of molecular mechanisms of host defense against bacterial infections and diagnosis and prognosis of mastitis.
李讨讨, 赵兴绪, 马友记. 转录组学在病原菌所致牛羊乳房炎中的研究进展[J]. 农业生物技术学报, 2019, 27(9): 1681-1691.
LI Tao-Tao, ZHAO Xing-Xu, MA You-Ji. Research Advances on Transcriptomics in Cattle and Sheep Mastitis Caused by Pathogenic Bacteria. 农业生物技术学报, 2019, 27(9): 1681-1691.
1 李上. 2018. 廊坊市奶牛隐性乳房炎发生规律的研究及其病原菌的分离鉴定[D]. 硕士学位论文, 吉林农业大学, 导师: 王好, pp.14-18. (Li S.2018. Isolation and identification of pathogenic bacteria and investigation of cow subclinical mastitis in Langfang[D]. Thesis for M.S., Jilin Agricultural University, Supervisor: Wang H, pp. 14-18.) 2 任婷婷, 张东君, 朱丽萍, 等. 2016. 葛根素对奶牛乳腺上皮细胞炎症模型中NF-κB信号通路的影响[J]. 农业生物技术学报, 24(1): 44-51. (Ren T T, Zhang D J, Zhu L P, et al.2016. Effect of puerarin on NF-κB signaling pathway in inflammation model of bovine (Bos taurus) mammary epithelial cells[J]. Journal of Agricultural Biotechnology, 24(1): 44-51.) 3 王晶. 2018. 奶牛临床型乳房炎病因调查和病原分离鉴定及药敏试验[D]. 硕士学位论文, 西北农林科技大学, 导师: 李勤凡, pp.11. (Wang J.2018. Investigation on the causes of clinical mastitis in bovine, isolation, identification and drug sensitivity test[D]. Thesis for M.S., Northwest A&F University, Supervisor: Li Q F, pp. 11.) 4 王梦琦, 倪炜, 唐程, 等. 2018. 中国荷斯坦牛乳铁蛋白启动子区-131C>T和-28A>C位点SNP与泌乳性状、乳房炎和生产寿命的关联分析[J]. 农业生物技术学报, 26(5): 811-818. (Wang M Q, Ni W, Tang C, et al.2018. Association analysis on the SNP of LF -131C>T and LF -28A>C with milk performance, clinical mastitis and lifetime for Chinese Holstein (Bos taurus)[J]. Journal of Agricultural Biotechnology, 26(5): 811-818.) 5 Aitken S L, Corl C M, Sordillo L M.2011. Immunopathology of mastitis: Insights into disease recognition and resolution[J]. Journal of Mammary Gland Biology and Neoplasia, 16(4): 291-304. 6 Bonnefont C, Toufeer M, Caubet C, et al.2011. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus[J]. BMC Genomics, 12: 208. 7 Buitenhuis B.2011. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis[J]. BMC Genomics, 12: 130. 8 Burriel A R, Dagnall G J.1997. Leukotoxic factors produced by staphylococci of ovine origin[J]. Microbiological Research, 152(3): 247-250. 9 Cai M, Hu Y, Zheng T, et al.2018. MicroRNA-216b inhibits heat stress-induced cell apoptosis by targeting Fas in bovine mammary epithelial cells[J]. Cell Stress & Chaperones, 23(5): 921-931. 10 Casamassimi A, Federico A, Rienzo M, et al.2017. Transcriptome profiling in human diseases: New advances and perspectives[J]. International Journal of Molecular Sciences, 18(8): 1652. 11 Chen Q, He G, Zhang W, et al.2016. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes[J]. Scientific Reports, 6: 27462. 12 Chopradewasthaly R, Korb M, Brunthaler R, et al.2017. Comprehensive RNA-Seq profiling to evaluate the sheep mammary gland transcriptome in response to experimental Mycoplasma agalactiae infection[J]. PLOS ONE, 12(1): e0170015. 13 Contreras A, Sánchez A, Corrales J C, et al.2007. Mastitis in small ruminants[J]. Small Ruminant Research, 68(1): 145-153. 14 Contreras G A, RodrãGuez J M.2011. Mastitis: Comparative etiology and epidemiology[J]. Journal of Mammary Gland Biology and Neoplasia, 16(4): 339-356. 15 Cortini F, Roma F, Villa C.2019. Emerging roles of long non-coding RNAs in the pathogenesis of Alzheimers disease[J]. Ageing Research Reviews, 50: 19-26. 16 Cremonesi P, Capoferri R, Pisoni G, et al.2012. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells[J]. BMC Genomics, 13(1): 540. 17 Fang L, Sahana G, Su G, et al.2017. Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle[J]. Scientific Reports, 7: 45560. 18 Günther J, Czabanska A, Bauer I, et al.2016. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages[J]. Veterinary Research, 47: 13. 19 Gao J, Yu F, Luo L P, et al.2012. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis[J]. Veterinary Journal, 194(3): 423-424. 20 Gonzalo C, Ariznabarreta A, Carriedo J A, et al.2002. Mammary pathogens and their relationship to somatic cell count and milk yield losses in dairy ewes[J]. Journal of Dairy Science, 85(6): 1460-1467. 21 He G, Ma M, Yang W, Wang H, et al.2017. SDF-1 in mammary fibroblasts of bovine with mastitis induces EMT and inflammatory response of epithelial cells[J]. International Journal of Biological Sciences, 13(5): 604-614. 22 Idriss S E, Tančin V, Foltys V, et al.2013. Relationship between mastitis causative pathogens and somatic cell counts in dairy cows[J]. Potravinarstvo Scientific Journal for Food Industry, 7(1): 207-212. 23 Jamali H, Barkema H, Jacques M, et al.2018. Invited review: incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows[J]. Journal of Dairy Science, 101(6): 4729-4746. 24 Jin W, Ibeagha-Awemu E, Liang G, et al.2014. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles[J]. BMC Genomics, 15: 181. 25 Kosciuczuk E, Lisowski P, Jarczak J, et al.2017. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma[J]. BMC Veterinary Research, 13(1): 161. 26 Kotzin J, Spencer S, McCright S, et al.2016. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan[J]. Nature, 537(7619): 239-243. 27 Králíčková Š, Pokorná M, Kuchtík J, et al.2012. Effect of parity and stage of lactation on milk yield, composition and quality of organic sheep milk[J]. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 60(1): 71-78. 28 Kumar N, Manimaran A, Kumaresan A, et al.2017. Mastitis effects on reproductive performance in dairy cattle: A review[J]. Tropical Animal Health and Production, 49(4): 663-673. 29 Lewandowska-Sabat A, Hansen S, Solberg T, et al.2018. MicroRNA expression profiles of bovine monocyte-derived macrophages infected in vitro with two strains of Streptococcus agalactiae[J]. BMC Genomics, 19(1): 241. 30 Li T T, Gao J F, Zhao X X, et al.2019. Digital gene expression analyses of mammary glands from meat ewes naturally infected with clinical mastitis[J]. Royal Society Open Science, 6: 181604. 31 Luoreng Z, Wang X, Mei C, et al.2018. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. International Journal of Biological Sciences, 14(1): 87-99. 32 Lutzow Y C, Donaldson L, Gray C P, et al.2008. Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection[J]. BMC Veterinary Research, 4: 18. 33 Maréchal C, Thiéry R, Vautor E, et al.2011. Mastitis impact on technological properties of milk and quality of milk products-a review[J]. Dairy Science & Technology, 91(3): 247-282. 34 Martí-De Olives A, Le Roux Y, Rubert-Alemán J, et al.2011. Short communication: Effect of subclinical mastitis on proteolysis in ovine milk[J]. Journal of Dairy Science, 94(11): 5369-5374. 35 Mehta A, Baltimore D.2016. MicroRNAs as regulatory elements in immune system logic[J]. Nature Reviews Immunology, 16(5): 279-294. 36 Modak R, Das Mitra S, Krishnamoorthy P, et al.2012. Histone H3K14 and H4K8 hyperacetylation is associated with Escherichia coli-induced mastitis in mice[J]. Epigenetics, 7(5): 492-501. 37 Mumtaz P T, Bhat S A, Ahmad S M, et al.2017. LncRNAs and immunity: Watchdogs for host pathogen interactions[J]. Biological Procedures Online, 19: 3. 38 Oget C, Allain C, Portes D, et al.2019. A validation study of loci associated with mastitis resistance in two French dairy sheep breeds[J]. Genetics Selection Evolution, 51(1): 5. 39 Ogorevc J, Mihevc S P, Hedegaard J, et al.2015. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge - a preliminary study[J]. Animal Science Papers & Reports, 33(2): 155-163. 40 Pareek R, Wellnitz O, Van Dorp R, et al.2005. Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells[J]. Journal of Applied Genetics, 46(2): 171-177. 41 Peixoto R, Mota R, Costa M.2010. Small ruminant mastitis in Brazil[J]. Pesquisa Veterinária Brasileira, 30(9): 754-762. 42 Pisoni G, Moroni P, Genini S, et al.2010. Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats[J]. Veterinary Immunology & Immunopathology, 135(3): 208-217. 43 Powell D, Tauzin S, Hind L E, et al.2017. Chemokine signaling and the regulation of bidirectional leukocyte migration in interstitial tissues[J]. Cell Reports, 19(8): 1572-1585. 44 Rinaldi M, Li R, Capuco A.2010. Mastitis associated transcriptomic disruptions in cattle[J]. Veterinary Immunology & Immunopathology, 138(4): 267-279. 45 Roth Z, Wolfenson D.2016. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: Basic and applied aspects[J]. Domestic Animal Endocrinology, 56: S218-S227. 46 Royster E, Wagner S.2015. Treatment of mastitis in cattle[J]. Veterinary Clinics of North America: Food Animal Practice, 31(1): 17-46. 47 Schupp J, Vukmirovic M, Kaminski N, et al.2017. Transcriptome profiles in sarcoidosis and their potential role in disease prediction[J]. Current Opinion in Pulmonary Medicine, 23(5): 487-492. 48 Seeley J, Baker R, Mohamed G, et al.2018. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors[J]. Nature, 559(7712): 114-119. 49 Sharifi S, Pakdel A, Ebrahimi M, et al.2018. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle[J]. PLOS ONE, 13(2): e0191227. 50 Sharma N, Singh N K, Bhadwal M S.2011. Relationship of somatic cell count and mastitis: An overview[J]. Asian-Australasian Journal of Animal Sciences, 24(3): 429-438. 51 Sole C, Arnaiz E, Manterola L, et al.2019. The circulating transcriptome as a source of cancer liquid biopsy biomarkers[J]. Seminars in Cancer Biology, DOI: 10.1016/j.semcancer.2019.01.003 (in Press) 52 Swanson K, Stelwagen K, Dobson J, et al.2009. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model[J]. Journal of Dairy Science, 92(1): 117-129. 53 Tao W, Mallard B.2007. Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows[J]. Veterinary Immunology & Immunopathology, 120(3): 201-211. 54 Thompson-Crispi K, Atalla H, Miglior F, et al.2014. Bovine mastitis: Frontiers in immunogenetics[J]. Frontiers in Immunology, 2014, 5: 493. 55 Tong C, Chen Q, Zhao L, et al.2017. Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands[J]. BMC Genomics, 18(1): 468. 56 Verbeke J, Piepers S, Peelman L, et al.2012. Pathogen-group specific association between CXCR1 polymorphisms and subclinical mastitis in dairy heifers[J]. Journal of Dairy Research, 79(3): 341-351. 57 Viguier C, Arora S, Gilmartin N, et al.2009. Mastitis detection: Current trends and future perspectives[J]. Trends in Biotechnology, 27(8): 486-493. 58 Wang H, Wang X, Li X, et al.2019. A novel long noncoding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis[J]. The FEBS Journal, 286(9): 1780-1795. 59 Wang X G, Ju Z H, Hou M H, et al.2016. Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis[J]. PLOS ONE, 11(7): e0159719. 60 Wang Z, Zheng Y.2018. lncRNAs regulate innate immune responses and their roles in macrophage polarization[J]. Mediators of Inflammation, 2018: 8050956. DOI: 10.1155/2018/8050956. 61 Weigel K, Shook G.2018. Genetic selection for mastitis resistance[J]. The Veterinary Clinics of North America Food Animal Practice, 34(3): 457-472. 62 Xu J, Tan X, Zhang X, et al.2015. The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd[J]. Microbial Pathogenesis, 88: 29-38. 63 Zhang H, Jiang H, Fan Y, et al.2018. Transcriptomics and iTRAQ-proteomics analyses of bovine mammary tissue with Streptococcus agalactiae-induced mastitis[J]. Journal of Agricultural and Food Chemistry, 66(42): 11188-11196.