Expression Analysis of Three Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis
WU Feng-Ying, LIU Meng-Qi, WANG Yue-Jin*
College of Horticulture/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
Abstract:As a phytoalexin produced by plants under biotic and abiotic stresses, resveratrol is a metabolite of stilbene synthases (STSs). Chinese wild Vitis quinquangularis accession 'Danfeng-2' contains a high concentration of resveratrol in its fruits, which also possesses strong plant resistance against diseases. The expressions and functions study of its STS genes can serve as the disease-resistant germplasm resources for resistance breeding. Based on the previous findings, this study explored the expression patterns of STS genes VqSTS12, VqSTS24 and VqSTS25 through a variety of biotic and abiotic stress treatments. As the qRT-PCR results revealed, the VqSTS12, VqSTS24 and VqSTS25 genes could be induced and expressed significantly just after 12 h of powdery mildew induction. Besides, their second-highest expressions were found during 96~120 h. Additionally, the 3 STS genes could be expressed under the following stress treatments: methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), trauma, low temperature, salt and drought. This indicated that the VqSTS12, VqSTS24 and VqSTS25 genes could be broadly induced in response to biotic and abiotic stresses. Subcellular localization in leaves of Nicotiana benthamiana observations showed that these 3 STSs were localized in the cytoplasm of leaf epidermal cells. In Vitis vinifera cv. 'Thompson Seedless' overexpressing VqSTS12 and VqSTS25, significant up-regulations of STS genes (VqSTS12 and VqSTS25) were found in transgenic plants that were under drought stress simulated with 10% PEG6000. Moreover, the physiological indices like malondialdehyde (MDA) content, peroxidase (POD) activity and catalase (CAT) activity of the transgenic plants were all superior to the wild-type plants, which suggested that the over-expression of VqSTS12 and VqSTS25 genes improved the drought resistance of Thompson Seedless. In summary, the STS genes VqSTS12, VqSTS24 and VqSTS25 could be used as the disease-resistant germplasm resources of improved European grape varieties for resistance breeding. The results of the present study provide the candidate genes and referential basis for further improving the disease and stress resistances of Vitis vinifera.
吴凤颖, 刘梦琦, 王跃进. 中国野生毛葡萄3个芪合酶基因表达分析[J]. 农业生物技术学报, 2020, 28(5): 847-858.
WU Feng-Ying, LIU Meng-Qi, WANG Yue-Jin. Expression Analysis of Three Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis. 农业生物技术学报, 2020, 28(5): 847-858.
[1] 曹江玲, 贺明阳, 朱自果, 等. 2012. 中国野生毛葡萄芪合酶基因克隆及表达分析[J]. 西北植物学报, 32(5): 0859-0865. (Cao J L, He M Y, Zhu Z G, et al.2012. Cloning and expression analysis of stilbene synthase gene from Chinese wild Vitis quinquanglaris[J]. Acta Botanica Boreal-Occidentalia Sinica, 32(5): 859-865.) [2] 杜杨建, 李瑞民, 程思妍, 等. 2016. 中国野生毛葡萄'丹凤-2' 3个芪合酶基因表达与功能分析[J]. 西北植物学报, 6(2): 0215-0224. (Du Y J, Li R M, Cneng S Y, et al.2016. Expression and function analysis of three stilbene synthase genes from Vitis quinquanglaris Rhed.Accession'Danfeng-2'[J]. Acta Botanica Boreal-Occidentalia Sinica, 6(2): 215-224.) [3] 段朝辉. 2002. 中国葡萄野生种白藜芦醇含量分析的研究[D]. 硕士学位论文, 西北农林科技大学, 导师:王跃进, pp. 20-22. (Duan C H.2002. Resveratrol contentin berries of Chinese wild Vitis speeies[D]. Thesis for M.S., Northwest Agriculture and Forestry University, Supervisor: Wang Y J, pp. 20-22.) [4] 林植芳, 李双顺, 林桂珠, 等. 1984. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J]. 植物学报, 26(6): 605-615. (Lin Z F, Li S S, Lin G Z, et al.1984. Relationship between senescence of rice leaves and superoxide dismutase activity and lipid peroxidation[J]. Scientia Agricultural Sinica, 26(6): 605-615.) [5] 刘梦琦, 吴凤颖, 王跃进. 2019. 中国野生毛葡萄芪合酶基因表达与抗白粉病分析[J]. 中国农业科学, 52(14):2436-2449. (Liu M Q, Wu F Y, Wang Y J.2019. Expression analysis and resistance to powdery mildew assessment of STS gene from Chinese wild Vitis quinquangularis[J]. Scientia Agricultural Sinica, 52(14): 2436-2449.) [6] 柳延涛, 陈寅初, 李万云, 等. 2011. 作物抗旱生理生化特性研究进展[J]. 耕作与栽培, (2): 6-7. (Liu Y T, Chen Y C, Li W Y, et al. 2011. Advances in research on physiological and biochemical characteristics of crop drought resis-tance[J]. Tillage and Cultivation, (2): 6-7.) [7] 马福利. 2018. 中国野生葡萄芪合酶基因表达与抗白粉病功能研究[D]. 博士学位论文, 西北农林科技大学, 导师:王跃进. pp: 41-42. (Ma F L.2018. Expression and regulation of Chinese wild Vitis stilbene synthase genes and their resistance to powdery mildew[D]. Thesis for Ph.D., Northwest Agriculture and Forestry University, Supervisor: Wang Y J, pp: 41-42.) [8] 贺普超, 王跃进, 王国英, 等. 1991. 中国葡萄属野生种抗病性的研究[J]. 中国农业科学, 24(3): 50-56. (He P C, Wang Y J, Wang G Y, et al.1991. Study on the disease resistance in Chinese native wild Vitis L. species[J]. Scientia Agricultural Sinica, 24(3): 50-56.) [9] 王跃进, 贺普超. 1997. 中国葡萄属野生种叶片抗白粉病遗传研究[J].中国农业科学, 30(1): 19-25. (Wang Y J, He P C.1997. Genetic study on resistance to powdery mildew in Chinese wild Vitis species leaves[J]. Scientia Agricultural Sinica, 30(1): 19-25.) [10] 吴凤颖. 2019. 中国野生毛葡萄芪合酶基因表达与抗病功能分析[D]. 硕士学位论文, 西北农林科技大学, 导师:王跃进, pp. 28-38. (Wu F Y.2019. The expression and function analysis of the stilbene synthase genes of the resistance to poedery mildew from Chinese wild Vitis quinquangularis[D]. Thesis for M.S., Northwest Agriculture and Forestry University, Supervisor: Wang Y J, pp. 28-38.) [11] 吴凤颖, 刘梦琦, 王跃进. 2020. 中国野生毛葡萄芪合酶基因抗白粉病功能分析[J]. 园艺学报, 47(2): 205-219. (Wu F Y, Liu M Q, Wang Y J.2020. Function analysis of the stilbene synthase genes VqSTS12 and VqSTS25 of the resistance to powdery mildew in Vitis quinquangularis[J]. Acta Horticulturae Sinica, 47(2):205-219.) [12] Ahuja I, Kissen R, Bones A M.2012. Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 17(2): 73-90. [13] Amako K, Chen G, Asada K.1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants[J]. Plant and Cell Physiology, 35(3): 497-504. [14] Baek S, Shin W, Ryu H, et al.2013. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases[J]. PLoS One, 8(3): e57930. [15] Beauchamp C, Fridovich I.1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 44(1): 276-287. [16] Borneman A R, Schmidt S A, Pretorius I S.2013. At the cutting-edge of grape and wine biotechnology[J]. Trends in Genetics, 29(4): 263-271. [17] Cheng S, Xie X, Xu Y, et al.2016. Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis[J]. Planta, 243(4): 1041-1053. [18] Chong J, Poutaraud A, Hugueney P.2009. Metabolism and roles of stilbenes in plants[J]. Plant Science, 177(3): 143-155. [19] Craveiro M, Cretenet G, Mongellaz C, et al.2017. Resveratrol stimulates the metabolic reprogramming of human CD4 + T cells to enhance effector function[J]. Science Signaling, 10(501): eaal3024. [20] Dai L, Zhou Q, Li R, et al.2015. Establishment of a picloram-induced somatic embryogenesis system in Vitis vinifera cv. chardonnay and genetic transformation of a stilbene synthase gene from wild-growing Vitis species[J]. Plant Cell, Tissue and Organ Culture, 121(2): 397-412. [21] Dercks W, Creassy L L.1989. The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction[J]. Physiological and Molecular Plant Pathology, 34(3): 189-202. [22] Duan D, Fischer S, Merz P, et al.2016. An ancestral allele of grapevine transcription factor MYB14 promotes plant defence[J]. Journal of Experimental Botany, 67(6): 1795-1804. [23] Dubrovina A S, Kiselev K V.2017. Regulation of stilbene biosynthesis in plants[J]. Planta, 246(4): 597-623. [24] Fan C, Pu N, Wang X, et al.2008. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata[J]. Plant Cell, Tissue and Organ Culture, 92(2): 197-206. [25] Fasoli M, Dal Santo S, Zenoni S, et al.2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program[J]. The Plant Cell, 24(9): 3489-3505. [26] Glawe D A.2008. The powdery mildews: A review of the world's most familiar (yet poorly known) plant pathogens[J]. Annual Review of Phytopathology, 46: 27-51. [27] Hain R, Bieseler B, Kindl H, et al.1990. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol[J]. Plant Molecular Biology, 15(2): 325-335. [28] Hain R, Reif H, Krause E, et al.1993. Disease resistance results from foreign phytoalexin expression in a novel plant[J]. Nature, 361(6408): 153-156. [29] Hart J H.1981. Role of phytostilbenes in decay and disease resistance[J]. Annual Review of Pchytopathology, 19(1): 437-458. [30] He X, Xue F, Zhang L, et al.2018. Overexpressing fusion proteins of 4-coumaroyl-CoA ligase (4CL) and stilbene synthase (STS) in tobacco plants leading to resveratrol accumulation and improved stress tolerance[J]. Plant Biotechnology Reports, 12(5): 295-302. [31] Jang M, Cai L, Udeani G O, et al.1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 275(5297): 218-220. [32] Karim C, Amin L, Said Z, et al.2015. Antioxidant-enzyme reaction to the oxidative stress due to alpha-cypermethrin, chlorpyriphos, and pirimicarb in tomato (Lycopersicon esculentum Mill.)[J]. Environmental Science and Pollution Research, 22(22): 18115-18126. [33] Krisa S, Téguo P W, Decendit A, et al.1999. Production of 13C-labelled anthocyanins by Vitis vinifera cell suspension cultures[J]. Phytochemistry, 51(5): 651-656. [34] Langcake P, Pryce R J.1976. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury[J]. Physiological Plant Pathology, 9(1): 77-86. [35] Ma F, Wang L, Wang Y.2018. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies[J]. Planta, 248(1): 89-103. [36] Malacarne G, Vrhovsek U, Zulini L, et al.2011. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses[J]. BMC Plant Biology, 11(1): 114. [37] Richter A, Jacobsen H, De Kathen A, et al.2006. Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera)[J]. Plant Cell Reports, 25(11): 1166-1173. [38] Rühmann S, Treutter D, Fritsche S, et al.2006. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit[J]. Journal of Agricultural and Food Chemistry, 54(13): 4633-4640. [39] Schnee S, Viret O, Gindro K.2008. Role of stilbenes in the resistance of grapevine to powdery mildew[J]. Physiological and Molecular Plant Pathology, 72(4-6): 128-133. [40] Serazetdinova L, Oldach K H, Lörz H.2005. Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity[J]. Journal of Plant Physiology, 162(9): 985-1002. [41] Shi J, He M, Cao J, et al.2014. The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera)[J]. Plant Physiology and Biochemistry, 74: 24-32. [42] Sirerol J A, Rodríguez M L, Mena S, et al.2016. Role of natural stilbenes in the prevention of cancer[J]. Oxidative Medicine and Cellular Longevity, 3128951. [43] Stark Lorenzen P, Nelke B, Hänßler G, et al.1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.)[J]. Plant Cell Reports, 16(10): 668-673. [44] Tassoni A, Fornalè S, Franceschetti M, et al.2005. Jasmonates and Na-orthovanadate promote resveratrol production in Vitis vinifera cv. Barbera cell cultures[J]. New Phytologist, 166(3):895-905. [45] Wang Y, Liu Y, He P, et al.1995. Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species[J]. Vitis, 34(3): 159-164. [46] Zhu Y J, Agbayani R, Jackson M C, et al.2004. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora[J]. Planta, 220(2): 241-250.