Codon Optimization, Prokaryotic Expression and Immunogenicity of Sip Protein from Streptococcus agalactiae
CHEN Zhi-Ting1,2,*, KE Xiao-Li2,*, ZHENG Shao-Ling3, LIU Zhi-Gang2, CHEN Gang1,**, LU Mai-Xin2,**
1 College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; 2 Pearl River Fisheries Research Institute/Key Laboratory of Tropical &Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Guangzhou 510380, China; 3 College of Animal Science and Technology, Zhongkai University of Agricultural Engineering, Guangzhou 510550, China
Abstract:Surface immunogenic protein (Sip) is a surface immunogenic protein of Streptococcus agalactiae, which can be used as a target for the potential vaccine antigen against S. agalactiae in tilapia (Oreochromis niloticus). In order to improve the expression level of recombinant Sip protein, the prokaryotic expression and immunogenicity analysis of codon optimized Sip protein from S. agalactiae was present in this study. The codon of Sip gene was optimized according to the Escherichia coli codon preference, and then the optimized gene was inserted into the expression vector pCzn1. Then, the newly constructed plasmid pCzn1-Sip was transfected into E. coli BL21 (Plys) cells for expression. Based on ultrasonication and purification by Ni column, the recombinant protein of Sip was obtained. The expression level and specificity of the recombinant codon optimized Sip were detected by SDS-PAGE and Western blot. The results showed that the 1 299 bp fragment of the optimized Sip gene was obtained by PCR amplification. The constructed recombinant plasmid pCzn1-Sip included 2 fragments about 4 400 bp and 1 299 bp after double digestion, which was consistent with the predicted value. The sequencing results showed that the optimized Sip gene was successfully transferred into the expression vector and the encoded amino acid sequence of Sip protein remained the same. SDS-PAGE and Western blot analysis showed that the recombinant Sip protein was obtained, which with a relative molecular weight of about 53 kD, and the recombinant optimized protein had S. agalactiae antigenicity. After purification by Ni column, it was found that the expression level of optimized soluble Sip was about 4 times compared with that of the non-optimized. Moreover, after immunization, the optimized Sip recombinant protein could supply about 69.23%~74.35% relative percent survivals against S. agalactiae challenge in tilapia. The results showed that the codon optimization of S. agalactiae surface protein Sip could obviously improve its expression level in E. coli. Moreover, the optimized Sip protein still has shown immunogenic. This study provides a scientific basis for the research and development of genetic engineering vaccines for tilapia streptococcus disease.
[1] 陈雪, 可小丽, 卢迈新, 等. 2014. 罗非鱼无乳链球菌LrrG蛋白的原核表达及免疫原性分析[J]. 水产学报, 238(5): 713-721. (Chen X, Ke X L, Lu M X, et al.2014. Prokaryotic expression and immunogenicity analysis of LrrG protein of Streptococcus agalactiae isolated from tilapia[J]. Journal of Fisheries of China, 238(5): 713-721.) [2] 陈徵婷, 可小丽, 陈刚, 等. 2021. 基于密码子优化策略的无乳链球菌表面蛋白LrrG的原核表达、纯化及免疫原性研究[J].大连海洋大学学报, 36(6): 920-928. (Chen Z T, Ke X L, Chen G, et al.2021. Prokaryotic expression, purification and immunogenicity of LrrG protein of Streptococcus agalactiae based on codon optimization[J]. Journal of Dalian Ocean University, 36(6): 920-928.) [3] 陈芳, 王兰, 张左兵. 2019. 基于密码子优化策略的斑马鱼FOXP3A分子的原核表达及多克隆抗血清制备[J]. 生物技术通讯, 30(1): 7-52. (Chen F, Wang L, Zhang Z B.2019. Prokaryotic expression and polyclonal antiserum production of codon optimized FOXP3A from the zebrafish (Danio rerio)[J]. Letters in Biotechnology, 30(1): 47-52.) [4] 郭一星, 杨银龙, 马玥, 等. 2019. 鼠疫耶尔森菌YopJ蛋白的基因密码子优化及异源表达纯化[J]. 中国病原生物学杂志, 14(9): 1058-1061, 1080. (Guo Y X, Yang Y L, Ma Y, et al.2019. Codon optimization and heterologous expression and purification of the YopJ protein from Yersinia pestis[J]. Journal of Pathogen Biology, 14(9): 1058-1061, 1080.) [5] 郭亚茜, 王灏琦, 费东亮, 等. 2019. 蜜蜂残翼病毒VP2基因密码子优化、原核表达及免疫原性分析[J]. 病毒学报, 35(2): 255-263. (Guo Y Q, Wang H Q, Fei D L, et al.2019. Codon optimization,prokaryotic expression and immunogenicity of the VP2 gene of the Deformed wing virus[J]. Chinese Journal of Virology, 35(2): 255-263.) [6] 黎炯, 叶星, 可小丽, 等. 2012. 罗非鱼无乳链球菌Sip基因的克隆、表达及免疫原性分析[J]. 水生生物学报, 36(4): 626-633. (Li J, Ye X, Ke X L, et al.2012. Cloning, expression and immunogenicity analysis of surface immunogenic protein (sip) of tilapia Streptococcus agalactiae[J]. Acta Hydrobiologica Sinica, 36(4): 626-633.) [7] 祁浩, 刘新利. 2016. 大肠杆菌表达系统和酵母表达系统的研究进展[J]. 安徽农业科学, 44(17): 4-6. (Qi H, Liu X L.2016. Research progress of expression system of Escherichia coli and yeast[J]. Journal of Anhui Agricultural Sciences, 44(17): 4-6.) [8] 苏友禄, 刘婵, 邓益琴, 等. 2019. 罗非鱼无乳链球菌病的研究进展[J]. 大连海洋大学学报, 34(5): 757-766. (Su Y L, Liu C, Deng Y Q, et al.2019. Research on Streptococcus agalactiae disease in tilapia: A review[J]. Journal of Dalian Ocean University, 34(5): 757-766.) [9] 袁伟, 张德锋, 可小丽, 等. 2018. 中国罗非鱼主养区无乳链球菌流行菌株的菌毛岛屿及其血清型分型[J]. 中国预防兽医学报, 40(6): 490-494. (Yuan W, Zhang D F, Ke X L, et al.2018. The pilus islands and molecular serotype of Streptococcus agalactiae isolated from tilapia in the major tilapia-culturing areas in China[J]. Chinese Journal of Preventive Veterinary Medicine, 40(6): 490-494.) [10] 许崇利, 杨梅, 许崇波. 2010. 大肠杆菌表达系统的影响因素[J]. 中国动物检疫, 27(8): 66-68. (Xu C L, Yang M, Xu C B.2010. Influencing factors of expression system in E. coli[J]. China Animal Health Inspection, 27(8): 66-68.) [11] 严俊杰, 杨绮玲, 林艺君, 等. 2019. 猪繁殖呼吸综合征病毒的NSP7蛋白密码子优化和表达及其免疫学活性鉴定[J]. 中国免疫学杂志, 35(7): 829-833. (Yan J J, Yang Q L, Lin L J, et al.2019. Codon optimization expression of PRSV NSP7 protein and immunological activity identification[J]. Chinese Journal of Immunology, 35(7): 829-833.) [12] 张行, 李新圃, 杨峰, 等. 2020. 无乳链球菌研究进展[J]. 中国兽医学报, 40(4): 864-872. (Zhang H, Li X P, Yang F, et al.2020. Research progress of Streptococcus agalactiae[J]. Chinese Journal of Veterinary Medicine, 40(4): 864-872.) [13] 张晓元, 郝荣华, 刘飞, 等. 2019. 密码子优化提高海藻糖合成酶基因在大肠杆菌中的表达水平[J]. 食品与药品, 21(1): 1-6. (Zhang X Y, Hao R H, Liu F, et al.2019. Codon optimization of trehalose synthase gene enhances its expression in Escherichia coli[J]. Food and Drug, 21(1): 1-6.) [14] Alper S, Kamyar K, Esma A, et al.2020. Codon optimization: A mathematical programing approach[J]. Bioinformatics, 36(13): 4012-4020. [15] Angov E.2011. Codon usage: Nature's roadmap to expression and folding of proteins[J]. Biotechnology Journal, 6(6): 650-659. [16] Brodeur B R, Boyer M, Charlebois I, et al.2000. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity[J]. Infection and Immunity, 68(10): 5610-5618. [17] Burgess-Brown N A, Sharma S, Sobott F, et al.2008. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study[J]. Protein Expression and Purification, 59(1): 94-102. [18] Cheng S, Han J, Huang Y, et al.2019. The correlation between expression of Sip protein in different serotypes of group b streptococcus and diagnosis[J]. Heliyon, 5(6): e01899. [19] Dey C, Narayan G, Kumar H K, et al.2017. Cell-penetrating peptides as a tool to deliver biologically active recombinant proteins to generate transgene-free induced pluripotent stem cells[J]. Studies on Stem Cells Research and Therapy, 3(1): 6-15. [20] Inouye S, Sahara-Miura Y, Sato J, et al.2015. Codon optimization of genes for efficient protein expression in mammalian cells by selection of only preferred human codons[J]. Protein Expression and Purification, 109: 47-54. [21] Ismail M S, Siti-Zahrah A, Syafiq M R, et al.2016. Feed-based vaccination regime against streptococcosis in red tilapia, Oreochromis niloticus × Oreochromis mossambicus[J]. BMC Veterinary Research, 12(1): 194-199. [22] Mauro V P.2018. Codon optimization in the production of recombinant biotherapeutics: Potential risks and considerations[J]. BioDrugs, 32(4): 69-81. [23] Navid N, Mohammad S, Reza R M, et al.2015. Production of a novel multi-epitope peptide vaccine for cancer immunotherapy in TC-1 tumor-bearing mice[J]. Biologicals, 43(1): 11-17. [24] Presnyak V, Alhusaini N, Chen Y H, et al.2015. Codon optimality is a major determinant of mrna stability[J]. Cell, 160(6): 1111-1124. [25] Rioux S, Martin D, Ackermann H W, et al.2001. Localization of surface immunogenic protein on group B streptococcus[J]. Infection and Immunity, 69(8): 5162-5165. [26] Sarah S, Barbara S.2018. Group b streptococcal colonization, molecular characteristics, and epidemiology[J]. Frontiers in Microbiology, 9: 437-450. [27] Wang R, Li L P, Huang Y, et al.2017. Pathogenicity of human ST23 Streptococcus agalactiae to fish and genomic comparison of pathogenic and non-pathogenic isolates[J]. Frontiers in Microbiology, 8: 1933-1943. [28] Webster G R, Teh A Y, Ma J K, et al.2017. Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants[J]. Biotechnology and Bioengineering, 114(3): 492-502. [29] Wen J D, Kuo S T, Chou H D.2020. The diversity of shine-dalgarno sequences sheds light on the evolution of translation initiation[J]. RNA Biology, 18(11): 1489-1500. [30] Yang Z L, Zhang Z S.2018. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review[J]. Biotechnology Advances, 36(1): 182-195. [31] Zhang D F, Gao Y X, Li Q Y, et al.2020. An effective live attenuated vaccine against Streptococcus agalactiae infection in farmed Nile tilapia (Oreochromis niloticus)[J]. Fish and Shellfish Immunology, 98: 853-859 .