Gene Cloning and Primary Functional Analysis of TRIF in Nile Tilapia (Oreochromis niloticus)
LIU Jie1,2, GAO Feng-Ying2, CHEN Gang1,*, LU Mai-Xin2,*, CAO Jian-Meng2, LIU Zhi-Gang2, WANG Miao2, HAN Xue-Qing2,3
1 College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; 2 Pearl River Fisheries Research Institute/Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Chinese Academy of Fishery Science, Guangzhou 510380, China; 3 College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Abstract:As an adaptor in Toll-like receptor (TLR) signaling pathway, TIR domain-containing adaptor inducing interferon-β receptor (TRIF) mediates downstream signaling cascades and plays an important role in host innate immune responses. In order to investigate the potential role of TRIF in anti-disease immune response of Nile tilapia (Oreochromis niloticus), the cDNA sequence (GenBank No. MT199561) of TRIF gene was obtained by reverse transcription PCR (RT-PCR) and fragment amplification, and bioinformatic analysis was also performed. Real time quantitative PCR (qRT-PCR) was used to detect TRIF expression in healthy individuals and those with intraperitoneal injection of Streptococcus agalactiae, lipopolysaccharides (LPS) and polyinosinic polycytidylic acid (Poly I:C). The recombinant eukaryotic expression vector was constructed to analyze the subcellular localization of TRIF in 293T human (Homo sapiens) embryonic kidney cells and the activation of nuclear factor κ B (NF-κB). The results showed that TRIF cDNA was 3 135 bp in length which contained an ORF of 1 653 bp encoding a polypeptide with 550 amino acid residues. The deduced amino acid sequence contained Toll/IL-1 receptor (TIR) domain. In the phylogenetic tree, Nile tilapia was clustered with other fish and then clustered with zebrafish (Danio rerio) and mammals. The TRIF expression were widespread in all the tested tissues and organs (liver, skin, heart, kindey, stomach, gill, brain, spleen, intestine, blood and muscle), with the highest expression in the muscle and blood. After challenged with pathogenic bacteria S. agalactiae, the TRIF gene expression increased in the spleen and kidney, and then reached the peak at 24 h post infecton (hpi). After infection with LPS, TRIF was up-regulated in the liver and spleen, while down-regulated in the intestine and kidney. TRIF was up-regulated in the intestine and liver, and down-regulated in the kidney after infection with Poly I:C. The result of subcellular localization showed that TRIF protein distributed in the cytoplasm and could significantly increase NF-кB activity. Taken together, the above findings suggested that TRIF gene might play an important role in immune responses of Nile tilapia. This study could provide a reference for further studying on the function of TRIF gene in immunity evolution of teleost.
刘洁, 高风英, 陈刚, 卢迈新, 曹建萌, 刘志刚, 王淼, 韩雪晴. 尼罗罗非鱼TRIF基因克隆及功能初步分析[J]. 农业生物技术学报, 2020, 28(6): 1039-1051.
LIU Jie, GAO Feng-Ying, CHEN Gang, LU Mai-Xin, CAO Jian-Meng, LIU Zhi-Gang, WANG Miao, HAN Xue-Qing. Gene Cloning and Primary Functional Analysis of TRIF in Nile Tilapia (Oreochromis niloticus). 农业生物技术学报, 2020, 28(6): 1039-1051.
[1] 邓永强, 汪开毓. 2016. 鱼类无乳链球菌病的研究进展[J]. 中国畜牧兽医, 43(9): 2490-2495. (Deng Y Q, Wang K Y.2016. Research progress on fish Streptococcus agalactiae disease[J]. China Animal Husbandry & Veterinary Medicine, 43(9): 2490-2495.) [2] 高风英, 卢迈新, 黎建平, 等. 2016. 尼罗罗非鱼β2m基因的克隆、多态性分析及组织表达特征[J]. 农业生物技术学报, 24(10): 1588-1599. (Gao F Y, Lu M X, Li J P, et al.2016. Cloning, molecular polymorphism and expression pattern of β2m gene in Nile tilapia (Oreochromis niloticus)[J]. Journal of Agricultural Biotechnology, 24(10): 1588-1599.) [3] 贺扬. 2017. 感染无乳链球菌尼罗罗非鱼脾脏的病理学研究[D]. 博士学位论文, 四川农业大学, 导师: 汪开毓, pp. 1-185. (He Y.2017. Histopathology of the spleen in Nile tilapia infected by Stretococcus agalactiae[D]. Thesis for Ph.D., Sichuan Agricultural University, Supevisor: Wang K Y, pp. 1-185.) [4] 韩正强, 王楠楠. 2011. Toll样受体的研究进展[J]. 畜牧与兽医, 43(12): 93-96. (Han Z Q, Wang N N.2011. Progress in research on Toll-like receptors[J]. Animal Husbandry and Veterinary Medicine, 43(12): 93-96.) [5] 黎建平, 高风英, 卢迈新, 等. 2014. 尼罗罗非鱼MHC Iα全长cDNA的克隆、多态性及组织表达特征[J]. 中国水产科学, 21(6): 1134-1145. (Li J P, Gao F Y, Lu M X, et al.2014. cDNA isolation, polymorphism analysis, and tissue expression of MHC Iα of Nile tilapia (Oreochromis niloticus)[J]. Journal of Fishery Sciences of China, 21(6): 1134-1145.) [6] 卢迈新. 2010. 罗非鱼链球菌病研究进展[J]. 南方水产, 6(1): 75-79. (Lu M X.2010. Review of research on Streptococcosis in tilapia[J]. South China Fisheries Science, 6(1): 75-79.) [7] 卢迈新, 黄樟翰. 2005. 罗非鱼遗传育种研究[J]. 上海水产大学学报, (02): 186-191. (Lu M X, Huang Z H. 2005. A review of genetics and breeding for tilapi[J]. Journal of Shanghai Fisheries University, (02): 186-191.) [8] 卢迈新, 黎炯, 叶星, 等. 2010. 广东与海南养殖罗非鱼无乳链球菌的分离、鉴定与特性分析[J]. 微生物学通报, 37(5): 766-774. (Lu M X, Li J, Ye X, et al.2010. Identification and characterizations of Streptococcus agalactia isolated from tilapia cultured in Guangdong and Hainan Provinces[J]. Microbiology China, 37(5): 766-774.) [9] 路飏, 王启龙, 李敏, 等. 2013. 斑点叉尾TLR20和TLR21基因在不同细菌和病毒感染后的表达特征[J]. 渔业科学进展, 34(06): 44-51. (Lu Y, Wang Q L, Li M, et al.2013. Expression analysis of TLR20 and TLR21 genes in channel catfish Ictalurus punctatus challenged by different bacteria and virus[J]. Progress in Fishery Sciences, 34(06): 44-51.) [10] 李婷婷, 刘阳, 苏永超, 等. 2016. 接头分子在TLRs信号传导中的作用研究进展[J]. 河南农业科学, 45(01): 20-23. (Li T T, Liu Y, Su Y C, et al.2013. Progress of the roles of adaptor molecules in TLRs signaling pathway[J]. Journal of Henan Agricultural Sciences, 45(01): 20-23.) [11] 庞纪彩. 2016. 尼罗罗非鱼Toll样受体信号通路基因表达研究[D]. 博士学位论文, 上海海洋大学, 导师: 赵金良, pp. 1-132. (Pang J C.2016. Expression analysis of TLR signaling pathway genes of Nile tilapia[D]. Thesis for Ph.D., Shanghai Ocean University, Supevisor: Zhao J L, pp. 1-132.) [12] 苏友禄, 刘婵, 邓益琴, 等. 2019. 罗非鱼无乳链球菌病的研究进展[J]. 大连海洋大学学报, 34(5): 757-766. (Su Y L, Liu C, Deng Y Q, et al.2019. Research on Streptococcus agalactiae disease in tilapia: A review[J]. Journal of Dalian Ocean University, 34(5): 757-766.) [13] 王启龙, 李敏, 路飏, 等. 2012. 斑点叉尾鮰TICAM在细菌和病毒感染后的基因表达特征[J]. 渔业科学进展, 33(01): 47-53. (Wang Q L, Li M, Lu Y, et al.2012. Gene expression profiling of TIR-domain-containing adaptor molecule (TICAM) in channel catfish Ictalurus punctatus challenged with different pathogens including bacteria and virus[J]. Progress in Fishery Sciences, 33(01): 47-53.) [14] 肖调义, 李伟, 王荣华, 等. 2016. 赤眼鳟Toll样受体3基因cDNA全长克隆及表达分析[J]. 水生生物学报, 40(05): 894-901. (Xiao T Y, Li W, Wang R H, et al.2016. Molecular cloning and expression analysis of toll-like receptor 3 gene in barbel chub Squaliobarbus curriculus[J]. Acta Hydrobiologica Sinica, 40(05): 894-901.) [15] 徐莹, 李耀国, 王荣华, 等. 2018. 赤眼鳟TRIF基因cDNA克隆及其组织表达分析[J]. 湖南师范大学自然科学学报, 41(02): 26-33. (Xu Y, Li Y G, Wang R H, et al.2018. cDNA cloning and tissue expression analysis of TRIF in Squaliobarbus Curriculus[J]. Journal of Natural Science of Hunan Normal University, 41(02): 26-33.) [16] 姚志刚, 冯建军, 王艺磊, 等. 2015. 欧洲鳗鲡MyD88基因的克隆及其免疫功能分析[J]. 水产学报, 39(03): 305-317. (Yao Z G, Feng J J, Wang Y L, et al.2015. Molecular cloning and immune function analysis of MyD88 gene in Anguill anguilla[J]. Journal of Fisheries of China, 39(03): 305-317.) [17] 张永安, 孙宝剑, 聂品. 2000. 鱼类免疫组织和细胞的研究概况[J]. 水生生物学报, 24(06): 648-654. (Zhang Y A, Sun B J, Nie P.2000. Immune tissues and cells of fish: A review[J]. Acta Hydrobiologica Sinica, 24(06): 648-654.) [18] 邹芝英. 2014. 尼罗罗非鱼髓样分化因子(MyD88)的分离及组织表达[C]//, 中国水产学会学术年会论文摘要集. 中国水产学会, pp. 56. (Zou Z Y. 2014. Cloning and expression of a myeloid differentiation factor 88 gene in tilapia Oreochromis niloticus[C]//, China Aquatic Society Academic Annual Conference Abstracts. China Society of Fisheries, pp. 56.) [19] Akira S.2003. Toll-like receptor signaling[J]. Journal of Biological Chemistry, 278(40): 38105-38108. [20] Akira S, Uematsu S, Takeuchi O, et al.2006. Pathogen recognition and innate immunity[J]. Cell, 124(4): 783-801. [21] Barton G M, Medzhitov R.2003. Toll-like receptor signaling pathways[J]. Science, 300(5625): 1524-1525. [22] Baoprasertkul P, Peatman E, Somridhivej B Z, et al.2006. Toll-like receptor 3 and TICAM genes in catfish: Species-specific expression profiles following infection with Edwardsiella ictaluri[J]. Immunogenetics, 58(10): 817-830. [23] Carty M, Goodbody R, Schröder M, et al.2006. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling[J]. Nature Immunology, 7(10): 1074-1081. [24] Coulibaly I, Gahr S, Palti Y.2006. Genomic structure and expression of uncoupling protein 2 genes in rainbow trout (Oncorhynchus mykiss)[J]. BMC Genomics, 7(1): 230. [25] Dalmo R A, Ingebrigtsen K, Bøgwald J.1997. Non-specificdefence mechanisms in fish, with particular reference to the reticuloendothelial system (RES)[J]. Journal of Fish Diseases, 20(4): 241-273. [26] Fan S, Chen S, Liu Y, et al.2008. Zebrafish TRIF, a Golgi-localized protein, participates in IFN induction and NF-κB activation[J]. Journal of Immunology, 180(8): 5373-5383. [27] Jiang Z, Mak T W, Sen G, et al.2004. Toll-like receptor 3-mediated activation of NF-kappa B and IRF3 diverges at Toll-IL-1 receptor domain-containing adapterinducing IFN-beta[J]. Proceedings of the National Academy of Science of the USA, 101(10): 3533-3538. [28] Lin S, Lo Y C, Wu H, et al.2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling[J]. Nature, 465(7300): 885-890. [29] Oshiumi H, Matsumoto M, Funami K, et al.2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction[J]. Nature Immunology, 4(2): 161-167. [30] Oshiumi H, Sasai M, Shida K, et al.2003. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta[J]. Journal of Biological Chemistry, 278(50): 49751-64972. [31] Zou P F, Shen J J, Li Y, et al.2019. Molecular cloning and functional characterization of TRIF in large yellow croaker Larimichthys crocea[J]. Fish and Shellfish Immunology, 91: 108-121. [32] Pang J C, Gao F Y, Lu M X, et al.2013. Major histocompatibility complex class ⅡA and ⅡB genes of Nile tilapia (Oreochromis niloticus): Genomic structure, molecular polymorphism and expression patterns[J]. Fish & Shellfish Immunology, 34(2): 486-496. [33] Pang J C, Gao F Y, Wang M, et al., 2017. Isolation and characterization of Toll-like receptor 21 and 22 genes from Nile tilapia, Oreochromis niloticus (Linnaeus)[J]. Aquaculture Report, 48: 3528-3544. [34] Sullivan C, Postlethwait J, Lage C, et al.2007. Evidence for evolving Toll-IL-1 receptor-containing adaptor molecule function in vertebrates[J]. Journal of Immunology, 178(7): 4517-4527. [35] Sato S, Sugiyama M, Yamamoto M, et al.2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling[J]. Journal of Immunology, 171(8): 4304-4310. [36] Seya T, Oshiumi H, Sasai M, et al.2005. TICAM-1 and TICAM-2: Toll-like receptor adapters that participate in induction of type 1 interferons[J]. The International Journal of Biochemistry and Cell Biology, 37: 524-529. [37] Sun X Q, Yin J P, Starovasnik M A, et al.2001. Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3[J]. Journal of Biological Chemistry, 277(11): 9505-9511. [38] Tatematsu M, Ishii A, Oshiumi H, et al.2010. A molecular mechanism for Toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation[J]. The Journal of Biological Chemistry, 285(26): 20128-20136. [39] Tatematsu M, Seya T, Matsumoto M, et al.2014. Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses[J]. The Biochemical Journal, 458(2): 195-201. [40] Wei J G, Zhang X, Zang S Q, et al.2017. Expression and functional characterization of TRIF in orange-spotted grouper (Epinephelus coioides)[J]. Fish and Shellfish Immunology, 71: 295-304. [41] Wang R H, Li W, Fan Y D, et al.2017. Tlr22 structure and expression characteristic of barbel chub, Squaliobarbus curriculus provides insights into antiviral immunity against infection with Grass carp reovirus[J]. Fish and Shellfish Immunology, 66: 120-128. [42] Xu Y, Tao X, Shen B, et al.2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains[J]. Nature, 408(6808): 111-115. [43] Yang C, Li Q, Su J, et al.2013. Identification and functional characterizations of a novel TRIF gene from grass carp (Ctenopharyngodon idella)[J]. Developmental and Comparative Immunology, 41: 222-229. [44] Yamamoto M, Sato S, Hemmi H, et al.2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 301(5633): 640-643. [45] Yang M Y, Yuan S H, Huang S F, et al.2011. Characterization of bbtTICAM from amphioxus suggests the emergence of a MyD88-independent pathway in basal chordates[J]. Cell Research, 21(10): 1410-1423. [46] Yniv P, Scott A G, Maureen K P, et al.2010. Identification, characterization and genetic mapping of TLR7, TLR8a1 and TLR8a2 genes in rainbow trout (Oncorhynchus mykiss)[J]. Developmental and Comparative Immunology, 34(2): 219-233. [47] Zhang J, Kong X H, Zhou C J, et al.2014. Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways[J]. Fish and Shellfish Immunology, 41(2): 380-388. [48] Zhao X Y, Chu Q, Cui J X, et al.2017. IRF9 as a negative regulator involved in TRIF-mediated NF-κB pathway in a teleost fish, Miichthys miiuy[J]. Molecular Immunology, 85: 123-129.