Abstract:Trihelix are transcription factors that can specifically bind to the light-responsive element GT element, and are widely involved in plant growth and development and response to adversity stress. In this study, the Trihelix transcription factor family members were identified in the strawberry (Fragaria vesca) genome, and further conducted bioinformatics and expression analysis under stress. The results showed that the strawberry Trihelix transcription factor family consisted of 26 members, distributed on chr01~chr07, among them, the largest number of members were distributed on chr06, with 7 Trihelix transcription factor family members. The results of the subcellular localization prediction showed that the FvTrihelix transcription factor family members were mainly localized in the nucleus and cytoplasm. Phylogenetic analysis showed that FvTrihelix proteins were divided into 5 subfamilies, of which Group2, Group3, Group4 and Group5, contained 1, 3, 11 and 11 FvTrihelix members, respectively. Cis-acting element analysis showed that the members of this family were mainly related to exogenous hormones, drought and low temperature response elements. qRT-PCR results showed that the relative expression of FvTrihelix14 were significantly higher than the control under 4 ℃ condition (P<0.05), being 8 times that of the control (CK). The expression level of FvTrihelix15 under 10% PEG and 4 ℃ treatments showed significant differences compared to the CK (P<0.05), being 12 and 14 times that of the control, respectively. In summary, the members of the strawberry Trihelix transcription factor family are able to respond to various stress conditions. This study provides a theoretical basis for the screening and application of stress-resistant genes in strawberries.
[1] 焦鹏, 邹俊岩, 蒋振忠, 等. 2022. 玉米Trihelix 转录因子家族的筛选与生物信息学分析[J]. 吉林农业大学学报, 44(5): 520-527. (Jiao P, Zou J Y, Jiang Z Z, et al.2022. Screening and bioinformatics analysis of maize Trihelix transcription factor family[J]. Journal of Jilin Agricultural University, 44(5): 520-527.) [2] 胡风越, 刘廷武, 周曼丽, 等. 2018. 二穗短柄草Trihelix转录因子家族的基因组学分析[J]. 江苏农业科学, 46(18): 32-37. (Hu F Y, Liu T W, Zhou M L,et al.2018. Genomics analysis of the Trihelix transcription factor family of distachyon[J]. Jiangsu Agricultural Science, 46(18): 32-37.) [3] 李月. 2013.棉花逆境胁迫应答Trihelix转录因子的鉴定及功能分析[D]. 博士学位论文, 石河子大学. 导师: 孙杰, 谢宗铭, pp. 18-21. (Li Y.2013. Characterization and functional analysis of Trihelix transcription factors responsive to abiotic stresses in cotton[D]. Thesis for the Ph. D., Shihezi University, Supervisor: Sun J, Xie Z M, pp. 18-21.) [4] 梁淑敏, 罗冬兰, 程玉瑾, 等. 2017. 香蕉trihelix转录因子MaGTL1a的分离及特性[J]. 果树学报, 34(08): 935-945. (Liang S M, Luo D L,Cheng Y J, et al.2017. Isolation and characterization of the banana trihelix transcription factor MaGTL1a[J]. Journal of Fruit Science.,34(08): 935-945.) [5] 刘国梅, 郭淑慧, 孙璇, 等. 2024. 改良CTAB法提取不同作物总RNA技术研究[J]. 中国农学通报, 40(11): 28-35. (Liu G M, Guo S H, Sun X, et al.2024. Technology of improved CTAB method for extracting total RNA from different crops[J]. Chinese Agricultural Science Bulletin, 40(11): 28-35. [6] 卢世雄, 王萍, 何红红, 等. 2019. 葡萄Trihelix转录因子家族生物信息及其基因表达分析[J]. 园艺学报, 46(07): 1257-1269. (Lu S X, Wang P, He H H, et al.2019. Bioinformatics identification and expression analysis of grape Trihelix transcription factor family[J]. Acta Horticulturae Sinica, 46(07): 1257-1269.) [7] 罗军玲, 赵娜, 卢长明. 2012. 植物Trihelix转录因子家族研究进展[J]. 遗传, 34(12): 1551-1560. (Luo J L, Lu N, Lu C M.2012. Plant Trihelix transcription factors family[J]. Hereditas, 34(12): 1551-1560.) [8] 黄礼鸿. 2017. 番茄Trihelix转录因子家族基因在抗病反应中的功能研究[D]. 硕士学位论文, 浙江大学, 导师: 宋凤鸣, pp. 64-66. (Huang L H.2017. Functional analysis of Trihelix transcription factor genes in tomato disease resistance responses[D]. Thesis for M.S., Zhejiang University, Supervisor: Song F M, pp. 64-66) [9] 王萍, 卢世雄, 梁国平, 等. 2019. 苹果Trihelix转录因子家族生物信息学鉴定与基因表达分析[J]. 园艺学报, 46(11): 2082-2098. (Wang P, Lu S X, Liang G P, et al.2019. Bioinformatics identification and expression analysis of Trihelix transcription factor family in apple[J]. Acta Horticulturae Sinica, 46(11): 2082-2098.) [10] 徐红云. 2017. 拟南芥Trihelix转录因子AST1调控植物抗旱、耐盐的机制研究[D]. 博士学位论文, 东北林业大学, 导师: 王玉成, pp. 39-62. (Xu H Y.2017. The mechanism of Arabidopsis Trihelix transcription factor AST1 in drought or salt stress response regulation[D]. Thesis for Ph.D., Northeast Forestry University, Supervisor:Wang Y C, pp. 39-62.) [11] 于冰, 陈孟迪, 王宇光. 2019. 植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展[J]. 植物遗传资源学报, 20(05): 1134-1140. (Yu B, Chen M D, Wang Y G.2019. Advances of plant Trihelix transcription factor family interacting with environmental factors[J]. Journal of Plant Genetic Resources, 20(05): 1134-1140.) [12] 周宏, 钱娇, 李荣芳, 等. 2017. 拟南芥Trihelix转录因子基因家族研究[J]. 江苏科技大学学报(自然科学版), 31(02): 231-236, 258. (Zhou H, Qian J, Li R F, et al.2017. Research of the Arabidopsis Trihelix transcription factor gene family[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 31(2): 231-236.) [13] 周宏, 李荣芳, 陈丹丹,等. 2018. 桑树Trihelix转录因子家族研究[J]. 基因组学与应用生物学, 37(02):874-80. (Zhou H, Li R F, Chen D D, et al.2018. Research on transcription factor family of mulberry Trihelix[J]. Genomics and Applied Biology, 37(02): 874-80.) [14] Ayadi M, Delaporte V, Li Y F, et al.2004. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis[J]. FEBS Letters, 562(1): 147-154. [15] Barr M S, Willmann M R, Jenik P D.2012. Taylor & Francis Online:: Is there a role for trihelix transcription factors in embryo maturation?[J]. Plant Signaling & Behavior, 7(2): 205-209. [16] Breuer C, Kawamura A, Ichikawa T, et al.2009. The Trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome[J]. The Plant Cell, 21(8): 2307-2322. [17] Brewer P B, Howles P A, Dorian K, et al.2024. A Trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower[J]. Development (Cambridge, England), 131(16): 4035-4045. [18] Fang Y, Xie K, Hou X, et al.2010. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses[J]. Molecular Genetics and Genomics, 283: 157-169. [19] Gao H Y, Huang R, Liu J, et al.2019. Genome-wide identification of Trihelix genes in Moso bamboo (Phyllostachys edulis) and their expression in response to abiotic stress[J]. Journal of Plant Growth Regulation, 38(4): 1127-1140. [20] Gao M J, Li X, Lui H, et al.2011. ASIL1 is required for proper timing of seed filling in Arabidopsis[J]. Plant Signaling & Behavior, 6(12): 1886-1888. [21] Gao M J, Lydiate D J, Li X, et al.2009. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings[J]. Plant Cell, 21(1): 54-71. [22] Green P J, Kay S A, Chua N H.1987. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene[J]. The EMBO Journal, 6(9): 2543-2549. [23] Imagawa M, Sakaue R,Tanabe A, et al.2000. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A[J]. FEBS Letters, 484(2): 118-124. [24] Kaplan-Levy R N, Brewer P B, Quon T, et al.2012. The trihelix family of transcription factors-light, stress and development[J]. Trends in Plant Science, 17(3): 163-171. [25] Li J, Zhang M, Sun J, et al.2019. Genome-wide characterization and identification of Trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 20(2): 251. [26] Lin Z W, Griffith M E, Li X R, et al.2007. Origin of seed shattering in rice (Oryza sativa L.)[J]. Planta, 226: 11-20. [27] O'Brien M, Kaplan-Levy R N, Quon T, et al.2015. PETAL LOSS, a trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10[J]. Journal of Experimental Botany, 66(9): 2475-2485. [28] Song A, Wu D, Fan Q, et al.2016. Transcriptome-wide identification and expression profiling analysis of Chrysanthemum Trihelix transcription factors[J]. International Journal of Molecular Sciences, 17(2): 198. [29] Wang L W, He M W, Guo S R, et al.2017. NaCl stress induces CsSAMs gene expression in Cucumis sativus by mediating the binding of CsGT-3b to the GT-1 element within the CsSAMs promoter[J]. Planta: An International Journal of Plant Biology, 245(5): 889-908. [30] Wang X H, Li Q T, Chen H W, et al.2014. Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis[J]. BMC Plant Biology, 14(1): 339. [31] Weng H, Yoo C Y, Gosney M J, et al.2012. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PLOS ONE, 7(3): e32925. [32] Xi J, Qiu Y, Du L, et al.2012. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,185-186. [33] Yoo Y C, Pence E H, Jin J B, et al.2010. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1 (W)(OA)[J]. Plant Cell, 22(12): 4128-4141.