Responses of SiPHYA and SiPHYB Gene to Light Quality, Photoperiod and Abiotic Stresses in Foxtail Millet (Setaria italica)
DU Xiao-Fen1,2, SHENG Meng-Meng1,2, WANG Zhi-Lan1,2, HAN Kang-Ni1, LI Yan-Fang1,2, CHENG Kai1, LI Yu-Xin1, LIAN Shi-Chao1, WANG Jun1,2,*
1 Millet Research Institute/Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Changzhi 046011, China; 2 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
Abstract:Phytochromes are an red/far-red receptors that regulate seed germination, plant height, flowering,and shade avoidance response in plants. To explore the response patterns of photochrome genes (SiPHYA and SiPHYB) to light quality, photoperiod and abiotic stress in foxtail millet, The cDNA sequences of SiPHYA (Seita.9G113600) and SiPHYB (Seita.9G427800) were cloned by RT-PCR, and the results showed that the full length of SiPHYA coding region was 3 396 bp, encoding 1 131 amino acids, and SiPHYB was 3 507 bp, encoding 1 169 amino acids. Phylogenetic trees of multi-species were constructed by MEGA-X, which indicated that SiPHYA and SiPHYB had a closer evolutionary relationship to ZmPHYA and ZmPHYB, respectively. Transcription factors binding to the promoters of the photochrome genes were predicted via the online website PlantRegMap, the results showed that 109 transcription factor from 29 families could bind to the promoter region of SiPHYA, and 93 transcription factor from 27 families could bind to the promoter region of SiPHYB. Furthermore, the expression patterns in different tissues and organs, light quality treatments, photoperiod treatments and stress treatments were analysed using qRT-PCR. qRT-PCR results showed that SiPHYA and SiPHYB were expressed in roots, stems, leaves and young panicles, with the highest expression levels in the flag leaves. The response patterns of SiPHYA and SiPHYB were diverse under different light quality treatment between 'Henggu12' and 'Changnong35', of which, SiPHYA had the highest expression level under darkness in 'Henggu12', while SiPHYA had the highest expression level under far-red light in 'Changnong35', and SiPHYB had the highest expression level under white light, and lowest expression under red light in both 'Henggu12' and 'Changnong35'. Under long-day, SiPHYA showed similar circadian rhythm changes in both 'Henggu12' and 'Changnong35', while SiPHYB showed rhythmic changes in 'Changnong35', but no rhythmic changes in 'Henggu12'. Under short-day, SiPHYA and SiPHYB showed no circadian rhythm changes in both 'Henggu12' and 'Changnong35'. Both SiPHYA and SiPHYB were responsive to high salt, high temperature, low temperature and drought stresses, but the response patterns were diverse. This study provides clues for furher exploring the mechanisms of SiPHYA and SiPHYB in the development and abiotic stresses, and provides a basis for their application in the genetic improvement of foxtai millet.
杜晓芬, 沈蒙蒙, 王智兰, 韩康妮, 李颜方, 成锴, 李禹欣, 连世超, 王军. 谷子SiPHYA和SiPHYB基因对光质、光周期和非生物胁迫的响应[J]. 农业生物技术学报, 2024, 32(5): 983-994.
DU Xiao-Fen, SHENG Meng-Meng, WANG Zhi-Lan, HAN Kang-Ni, LI Yan-Fang, CHENG Kai, LI Yu-Xin, LIAN Shi-Chao, WANG Jun. Responses of SiPHYA and SiPHYB Gene to Light Quality, Photoperiod and Abiotic Stresses in Foxtail Millet (Setaria italica). 农业生物技术学报, 2024, 32(5): 983-994.
[1] 贾小平, 全建章, 王永芳, 等. 2019. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 45(7): 1119-1127. (Jia X P, Quan J Z, Wang Y F, et al.2019. Effects of different photoperiod conditions on agronomic traits of foxtail millet[J]. Acta Agronomica Sinica, 45(7): 1119-1127.) [2] 贾小平, 张博, 何占祥, 等. 2022. 谷子光敏色素基因光周期、非生物胁迫响应特性及关键自然变异位点鉴定[J]. 生物工程学报, 38(5): 1929-1945. (Jia X P, Zhang B, He Z X, et al.2022. The responsive characteristics of phytochrome genes to photoperiod, abiotic stresses and identification of their key natural variation sites in foxtail millet (Setaria italica L.)[J]. Chinese Journal of Biotechnology, 38(5): 1929-1945.) [3] 李明哲, 郝洪波, 刘贵波, 等. 2015. 矮秆极早熟谷子新品种衡谷12号的选育[J]. 河北农业科学, 19(6): 3-5, 59. (Li M Z, Hao H B, Liu G B, et al.2015. Breeding of new summer foxtail millet variety Henggu No.12 with dwarf and earliest-maturing[J]. Journal of Hebei Agricultural Sciences, 19(6): 3-5, 59) [4] 李壮, 马燕斌, 蔡应繁, 等. 2010. 小麦光敏色素基因TaPhyB3的克隆和表达分析[J]. 作物学报, 36(5): 779-787. (Li Z, Ma Y B, Cai Y F, et al.2010. Cloning and expression analysis of TaPhyB3 in Triticum aestivum[J]. Acta Agronomica Sinica , 36(5): 779-787.) [5] 马晓净, 赵斌斌, 刘扬, 等. 2019. 玉米PHYB1基因的克隆、改造及其在拟南芥中的功能分析[J]. 生物技术进展, 9(4): 350-356. (Ma X J, Zhao B B, Liu Y, et al.2019. Cloning, modification and functional characterization of maize PHYB1 in Arabidopsis thaliana[J]. Current Biotechnology, 9(4): 350-356.) [6] 马燕斌, 王霞, 李换丽, 等. 2021. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 47(6): 1197-1202. (Ma Y B, Wang X, Li H L, et al.2021. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton[J]. Acta Agronomica Sinica , 47(6): 1197-1202.) [7] 申慧敏, 吴年隆, 王亚敏, 等. 2022. 谷子光敏色素家族基因的生物信息学及表达模式分析[J]. 山西农业科学, 50(1): 1-8. (Shen H M, Wu N L, Wang Y M, et al.2022. Bioinformatics and expression patterns analysis of phytochrome family gene in foxtail millet[J]. Journal of Shanxi Agricultural Sciences, 50(1): 1-8.) [8] 王霞, 马燕斌, 宋梅芳, 等. 2012 小麦TaPHYA基因亚家族的克隆和表达分析[J]. 作物学报, 38(8):1354-1360. (Wang X, Ma Y B, Song M F, et al.2012. Isolation and expression patterns of TaPHYA gene subfamily in common wheat[J]. Acta Agronomica Sinica, 38(8): 1354-1360.) [9] 王智兰, 韩康妮, 杜晓芬, 等. 2022. 谷子GRAS转录因子家族的全基因组鉴定、表达分析及标记开发[J].核农学报, 36(09): 1723-1737. (Wang Z L, Han K N, Du X F, et al.2022. Identification, expression analysis and marker development of GRAS transcription factor in foxtail millet[J]. Journal of Nuclear Agricultural Sciences, 36(09): 1723-1737.) [10] 杨陆浩, 王立建, 孙广华, 等. 2022. 栽培黑麦光敏色素PHYA、PHYB和PHYC基因转录丰度对不同光质处理的响应[J]. 作物学报, 48(12): 3057-3070. (Yang L H, Wang L J, Sun G H, et al.2022. Transcription abundances of PHYA, PHYB, and PHYC genes in response to different light treatments in Secale cereale[J]. Acta Agronomica Sinica, 48(12): 3057-3070.) [11] 杨宗举, 闫蕾, 宋梅芳, 等. 2016. 玉米光敏色素A1和A2在各种光处理下的转录表达特性[J]. 作物学报, 42(10): 1462-1470. (Yang Z J, Yan L, Song M F, et al.2016. Transcription characteristics of ZmPHYA1 and ZmPHYA2 under different light treatments in maize[J]. Acta Agronomica Sinica, 42(10): 1462-1470.) [12] 赵杰, 周晋军, 顾建伟, 等. 2012. 光敏色素B正调控水稻叶绿素合成和叶绿体的发育[J]. 中国水稻科学, 26(6): 637-642. (Zhao J, Zhou J J, Gu J W, et al2012. Phytochrome B positively regulates chlorophyll biosynthesis and chloroplast development in rice[J]. Chinese Rice Science, 26(6): 637-642.) [13] Bolylan M T, Quail P H.1989. Oat phytochrome is biologically active in transgenic tomatoes[J]. The Plant Cell, 1(8): 765-773. [14] Briggs W R, Olney M A.2001. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome[J]. Plant Physiology, 125(1): 85-88. [15] Clack T, Mathews S, Sharrock R A.1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE[J]. Plant Molecular Biology, 25(3): 413-427. [16] Chuck G, Muszynski M, Kellogg E, et al.2002. The control of spikelet meristem identity by the branched silkless1 gene in maize[J] Science, 298(5596): 1238-1241. [17] Dobrovolskaya O, Pont C, Sibout R, et al.2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat[J]. Plant Physiology, 167(1): 189-199. [18] Dong X J, Yan Y, Jiang B C, et al.2020. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures[J]. The EMBO Journal, 39(13): e103630. [19] Kim D H, Yamaguchi S, Lim S, et al.2008. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5[J]. The Plant Cell, 20(5): 1260-1277. [20] Komatsu M, Chujo A, Nagato Y, et al.2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets[J]. Development, 130(16): 3841-3850. [21] Lagarias J C, Mercurio F M.1985. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro[J].The Journal Bionlogical Chemistry, 260(4): 2415-2423. [22] Legris M, Klose C, Burgie E S, et al.2016. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 354(6314): 897-900. [23] Li B, Du X, Fei Y Y, et al.2021. Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9[J]. Rice, 14(1): 86. [24] Li Q Q, Wu G X, Zhao Y P, et al.2020. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height[J]. Plant Biotechnolgy Journal, 18(12): 2520-2532. [25] Li Z L, Sheerin D J, Roepenack-Lahaye E V, et al.2022. The phytochrome interacting proteins ERF55 and ERF58 repress light-induced seed germination in Arabidopsis thaliana[J]. Nature Communications, 13(1): 1656. [26] Liu J, Zhang F, Zhou J J, et al.2012. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice[J]. Plant Molecular Biology, 78(3): 289-300. [27] Liu X, Jiang W, Li Y L, et al.2023. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB[J]. Nature Plants, 9(4): 645-660. [28] Ma L, Han R, Yang Y Q, et al.2023. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance[J]. The Plant Cell, 35(8): 2997-3020. [29] Nagatani A, Kay S A, Deak M, et al.1991. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings[J]. Proceedings of the National Academy of Sciences of the USA, 88(12): 5207-5211. [30] Pearce S, Kippes N, Chen A, et al.2016. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways[J]. BMC Plant Biology, 16(1): 141. [31] QuailL P H.2002. Phytochrome photosensory signalling networks[J]. Nature Reviews Molecular Cell Biology, 3(2): 85-93. [32] Rockwell N C, Su Y S, Lagarias J C.2006. Phytochrome structure and signaling mechanisms[J]. Annual Review of Plant Biology, 57: 837-858. [33] Sheehan M J, Farmer P R, Brutnell T P.2004. Structure and expression of maize phytochrome family homeologs[J]. Genetics, 167(3): 1395-1405. [34] Sheehan M J, Kennedy L M, Costich D E, et al.2007. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize[J]. The Plant Journal, 49(2): 338-353. [35] Takano M, Inagaki N, Xie X Z, et al.2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice[J]. The Plant Cell, 17(12): 3311-3325. [36] Thiele A, Herold M, Lenk I, et al.1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development[J]. Plant Physiology, 120(1): 73-81. [37] Wang F F, Lian H L, Kang C Y, et al.2010. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana[J]. Molecular Plant, 3(1): 246-259. [38] Wang H L, Jia G Q, Zang N, et al.2022. Domestication-associated PHYTOCHROME C is a flowering time repressor and a key factor determining Setaria as a short-day plant[J]. The New Phytologist, 236(5): 1809-1823. [39] Whitelam G C, Devlin P F.1997. Roles of different phytochromes in Arabidopsis photomorphogenesis[J]. Plant, Cell and Environment, 20(6): 752-758. [40] Wies G, Mantese A I, Casal J J, et al.2019. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize[J]. Annals of Botany, 123(6): 1079-1088. [41] Yang L W, Liu S G, Lin R C.2020a. The role of light in regulating seed dormancy and germination[J]. Journal of Integrative Plant Biology, 62(9): 1310-1326. [42] Yang Z R, Zhang H S, Li X K, et al.2020b. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system[J]. Nature Plants, 6(9): 1167-1178.