Functional Analysis of Rice (Oryza sativa) TFⅡB-related Factor OsBRF1
CHEN Xin-Hui, CHEN Guang-Na, NING He, CHEN Jia-Luo, WANG Si-Yi, ZHU Cheng, YANG Su*
College of Life Sciences/Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
Abstract:In most eukaryotes, transcription factor ⅡB (TFⅡB) is a general transcription factor of RNA polymerase Ⅱ in transcription of DNA into RNA. TFⅡB-related factor 1 (BRF1) serves as the general transcription factor for RNA polymerase Ⅲ, responsible for synthesizing tRNA and 5S rRNA. In Arabidopsis thaliana, AtBRF1 and AtBRF2 participate in gametogenesis in a functionally redundant manner. However, the function of BRF1 in rice (Oryza sativa), an important monocotyledonous model plant and staple crop, has not been reported yet. In this study, OsBRF1 gene promoter-driven β-glucuronidase (GUS) expression vector was constructed. The results of GUS staining showed that OsBRF1 exhibited high expression levels in root, leaf, leaf sheath, stigma, mature root, mature leaf, panicle, pollen, endosperm, and anther, but it was not expressed in the glume. The fusion expression vector of OsBRF1 and GFP was transfected into Nicotiana benthamiana leaves via Agrobacterium tumefaciens, and it was found that OsBRF1 protein predominantly localized in the nucleus. Unable to obtain homozygous frameshift mutant plants using CRISPR/Cas9 gene editing methods indicated that OsBRF1 gene was homozygous lethal. RNAi-mediated silencing led to a significant reduction in pollen activity and fertility (P<0.05), suggesting a potential role of OsBRF1 in regulating rice fertility by modulating pollen viability. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated interaction between OsBRF1 and OsTBP1~3 (TBP: TATA-binding protein), indicating its potential role as a general transcription factor. This study provides basic material for further exploration of the gene function and regulatory mechanisms of OsBRF1.
[1] 陈炜. 2022. 调控水稻叶绿体发育基因YGL3的图位克隆及功能研究[D]. 硕士学位论文, 江西农业大学, 导师: 胡培松, pp. 1-113. (Chen W.2022. Map-based cloning and functional analysis of YGL3 gene controlling chloroplast development[D]. Thesis for M.S., Jiangxi Agricultural University, Supervisor: Hu P S, pp. 1-113.) [2] 刘涵, 孟成真, 刘玉青, 等. 2019. 禾谷炭疽菌CgRab5A的亚细胞定位研究[J]. 安徽农学通报, 25(22): 99-102. (Liu H, Meng C Z, Liu Y Q, et al.2019. Study on subcellular localization of CgRab5A in Colletotrichum graminicola[J]. Anhui Agricultural Science Bulletin, 25(22): 99-102.) [3] 刘永祥. 2019. 果蝇Trf4-1介导mRNA/miRNA的转录调控及机制研究[D]. 硕士学位论文, 武汉大学, 导师: 周溪, pp. 105. (Liu Y X.2019. Mechanism of Trf4-1 in mRNA and miRNA transcriptional control in Drosophila melanogaster[D]. Thesis for M.S., Wuhan University, Supervisor: Zhou X, pp. 105.) [4] 齐盼盼, 郭留明, 李静, 等. 2023. 水稻TAF12b (OsTAF12b) 基因cDNA克隆及其分子特性鉴定[J]. 中国水稻科学, 37(6): 577-586. (Qi P P, Guo L M, Li J, et al.2023. cDNA cloning and molecular characterization of OsTAF12b gene in Oryza sativa[J]. Chinese Journal of Rice Science, 37(6): 577-586.) [5] 申恒, 刘思慧, 李跃, 等. 2022. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 38(06): 74-80. (Sheng H, Liu S H, Li Y, et al.2022. Rapid crude extraction of genomic DNA from Solanum lycopersicum for PCR[J]. Biotechnology Bulletin, 38(06): 74-80.) [6] 王芳. 2019. RNF12介导的BRF1泛素化调控RNA聚合酶Ⅲ活性的作用及机制研究[D]. 硕士学位论文, 中国科学技术大学, 导师: 韩伟, pp. 95. (Wang F.2019. RNF12 regulates RNA polymeraseⅢ-dependent transcription viacatalyziong BRF1 ubiquitination[D]. Thesis for M.S., Journal of University of Science and Technology of China, Supervisor: Han W, pp. 95.) [7] 王晓桠, 卜瑞方, 胡海燕, 等. 2021. 小麦生长、成熟和产量负调控基因TaJIP2的克隆及功能分析[J]. 华北农学报, 36(06): 35-44. (Wang X Y, Bu R F, Hu H, et al.Cloning and function analysis of TaJIP2 gene negatively regulating growth, maturity and yield in Triticum aestivum L.[J]. Acta Agriculturae Boreali-Sinica, 36(06): 35-44.) [8] 张硕. 2021. RID1招募组蛋白修饰因子调控水稻成花转换的分子机理研究[D]. 硕士学位论文, 华中农业大学, 导师: 吴昌银, pp. 161. (Zhang S.2021. Molecular mechanism of rice floral transition modulated by RID1 recruiting histone modifiers[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Wu C Y, pp. 161.) [9] Browning D F, Busby S J W.2016. Local and global regulation of transcription initiation in bacteria[J]. Nature Reviews Microbiology, 14(10): 638-650. [10] Chen G N, Hu H L, Chen X H, et al.2023. TFⅡB-related Protein BRP5/PTF2 is required for both male and female gametogenesis and for grain formation in rice[J]. International Journal of Molecular Sciences, 24(22): 16473. [11] Cramer P.2019. Organization and regulation of gene transcription[J]. Nature, 573(7772): 45-54. [12] Huang C H, Zhang Y M, Zhong S P.2019. Alcohol intake and abnormal expression of Brf1 in breast cancer[J]. Oxidative Medicine and Cellular Longevity, 2019: 4818106. [13] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 25: 402-408. [14] Loveridge C J, Slater S, Campbell K J, et al.2020. BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration[J]. Oncogene, 39(8): 1797-1806. [15] Roeder R G.2019. 50+ years of eukaryotic transcription: An expanding universe of factors and mechanisms[J]. Nature Structural & Molecular Biology, 26(9): 783-791. [16] Samuel P B, Zachary F B.2014. The σ enigma: Bacterial σ factors, archaeal TFB and eukaryotic TFⅡB are homologs[J]. Transcription, 5(4): e967599. [17] Shandilya J, Roberts S G E.2012. The transcription cycle in eukaryotes: From productive initiation to RNA polymeraseⅡ recycling[J]. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1819(5): 391-400. [18] Teng Y T, Cai M H, Qin Y, et al.2023. BEAR1, a bHLH transcription factor, controls seedling growth by regulating gibberellins biosynthesis in rice[J]. The Crop Journal, 11(3): 744-755. [19] Zhang K Y, Yang W, Yu H, et al.2019. Double mutation of BRF1 and BRF2 leads to sterility in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 516(3): 969-975.