Application of Double Resonator Piezoelectric Cytometry in Salt Tolerance Evaluation of Rice (Oryza sativa) Varieties
YANG Hou-Peng1,2, ZHOU Tie-An1,2,*, PAN Wei-Song1,2, XIAO Ying-Hui2,3
1 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; 2 Hunan Engineering Research Center for Cell Mechanics and Functional Analysis, Changsha 410128, China; 3 College of Agronomy, Hunan Agricultural University, Changsha 410128, China
Abstract:The selective breeding of rice (Oryza sativa) varieties and the testing of stress resistance (salt tolerance) are usually conducted on the tested plants, which is not only laborious, time-consuming and destructive, but also susceptible to environmental factors, which greatly limits the efficiency and reliability of selective breeding. The purpose of this study was to establish a new method for evaluating salt tolerance of rice varieties based on double resonant piezoelectric cytometry (DRPC) and cell mechanics testing, using live rice cells as the characterization object. Firstly, 'Haidao 86' and 'Nipponbare' rice varieties with known strong salt tolerance and salt-sensitive characteristics respectively were selected to prepare their adherent cell culture systems, and then DRPC was used to measure the responses and variations of cells generated surface stress (ΔS) and cell viscoelasticity index (CVI) to different concentrations of NaCl stress. The results showed that the ΔS of 'Nipponbare' cells decreased first and then increased under the conditions of 20 and 40 mmol/L NaCl, and decreased monotonously under the conditions of 60~120 mmol/L NaCl; at the same time, the cells became softer and then harder under the conditions of 20 and 40 mmol/L NaCl, and became softer monotonously under the conditions of 60~120 mmol/L NaCl, and reached the limit of resisting salt stress under the condition of 40 mmol/L NaCl. The ΔS of 'Haidao 86' cells decreased first and then increased under the condition of 20 mmol/L NaCl, increased first and then decreased under the conditions of 40 and 60 mmol/L NaCl, fluctuated up and down under the conditions of 80 and 100 mmol/L NaCl, and increased sharply under the condition of 120 mmol/L NaCl. At the same time, the cells became harder under the conditions of 20, 80 and 100 mmol/L NaCl, and became harder first and then softer under the conditions of 40, 60 and 120 mmol/L NaCl, and reached the limit of resisting salt stress under the condition of 100 mmol/L NaCl. By a comprehensive comparison of the changes in cells generated stress and CVI produced by the cells of the 2 varieties under different concentrations of NaCl stress, it could be confirmed that the salt tolerance of 'Haidao86' was higher than that of 'Nipponbare', which was consistent with the result that the salt tolerance of 'Haidao86' was higher than that of Nipponbare' reported at the level of field plants. Therefore, this study not only confirms the accuracy and reliability of the DRPC for the evaluation of salt tolerance of rice varieties, but also provides an important reference for the wide application of this new method to efficiently evaluate crop stress resistance, which is of great significance for crop breeding for abiotic stress resistance.
[1] 陈晓亚, 薛红卫. 2012. 植物生理与分子生物学[M]. 北京: 高等教育出版社, pp. 630. (Chen X Y, Xue H W.2012. Plant Physiology and Molecular Biology[M]. Higher Education Press, Beijing, China, pp. 630.) [2] 邓君, 周铁安, 胡家金, 等. 2017. 拟南芥与烟草细胞低温胁迫下的粘弹性变化规律与耐冷性比较[J]. 中国农学通报, 33(17): 19-23. (Deng J, Zhou T A, Hu J J, et al.2017. Comparison of viscoelastic changes and cold tolerance between Arabidopsis and tobacco cells under low temperature stress[J]. China Agricultural Bulletin, 33(17): 19-23.) [3] 黄靓圆, 周铁安, 谭成方, 等. 2019. QCM与光学显微镜共同应用于研究细胞-细胞相互作用对细胞-基质黏附的影响[J]. 中国细胞生物学学报, 41(09): 1756-1762. (Huang L Y, Zhou T A, Tan C F, et al.2019. QCM and optical microscope were used to study the effect of cell-cell interaction on cell-matrix adhesion[J]. Chinese Journal of Cell Biology, 41(09): 1756-1762.) [4] 焦德志, 赵泽龙. 2019. 盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展[J]. 江苏农业科学, 47(20): 1-4. (Jiao D Z, Zhao Z L.2019. Research progress on the effects of saline-alkali stress on plant morphology, physiology and biochemistry and plant response[J]. Jiangsu Agricultural Sciences, 47(20): 1-4.) [5] 兰雅琴, 周铁安, 陈宗星, 等. 2022. QCM实时监测两种细胞骨架药物对烟草BY-2细胞粘弹性的影响[J]. 农业生物技术学报, 30(02): 305-315. (Lan Y Q, Zhou T A, Chen Z X, et al.2022. QCM real-time monitoring of the effects of two cytoskeleton drugs on the viscoelasticity of tobacco BY-2 cells[J]. Journal of Agricultural Biotechnology, 30(02): 305-315.) [6] 刘梦霜, 郭海峰, 陈观秀, 等. 2023. 不同水稻品种对NaCl胁迫的生理响应及耐盐性评价[J]. 热带作物学报, 44(02): 326-336. (Liu M S, Guo H F, Chen G X, et al.2023. Physiological response and salt tolerance evaluation of different rice varieties to NaCl stress[J]. Acta Tropical Crops, 44(02): 326-336.) [7] 刘佳音, 邵晓宇, 邹丹丹, 等. 2019. 水稻耐盐碱鉴定方法及评价指标研究进展[J]. 杂交水稻, 34(06): 1-6. (Liu J Y, Shao X Y, Zou D D, et al.2019. Research progress on identification methods and evaluation indexes of saline-alkali tolerance in rice[J]. Hybrid Rice, 34(06): 1-6.) [8] 裴惠娟, 张满效, 安黎哲. 2011. 非生物胁迫下植物细胞壁组分变化[J]. 生态学杂志, 30(06): 1279-1286. (Pei H J, Zhang M X, An L Z.2011. Changes of plant cell wall components under abiotic stress[J]. Journal of Ecology, 30(06): 1279-1286.) [9] 汪洪艳. 2019. 海稻86耐盐机理及基因定位的研究[D]. 硕士学位论文, 湖南师范大学, 导师: 梁满中, pp. 29. (Wang H Y.2019. Study on salt tolerance mechanism and gene mapping of sea rice 86[D]. Thesis for M.S., Hunan Normal University, supervisor: Liang M Z, pp. 29.) [10] 肖苏婷, 姚政, 周琳, 等. 2020. 耗散型石英晶体微天平实时监测氧化损伤红细胞与内皮细胞的粘附[J]. 分析化学, 48(11): 1550-1555. (Xiao S T, Yao Z, Zhou L, et al.2020. Real-time monitoring of the adhesion of oxidatively damaged red blood cells to endothelial cells by dissipative quartz crystal microbalance[J]. Analytical Chemistry, 48(11): 1550-1555.) [11] 杨娅坤, 赵飞, 刘建, 等. 2022. 盐碱胁迫对水稻的影响及其相关机制的研究进展[J]. 分子植物育种, 20(15): 5150-5157. (Yang Y K, Zhao F, Liu J, et al.2022. Effects of saline-alkali stress on rice and its related mechanisms[J]. Molecular Plant Breeding, 20(15): 5150-5157.) [12] 姚栋萍, 吴俊, 胡忠孝, 等. 2019. 水稻耐盐碱的生理机制及育种策略[J]. 杂交水稻, 34(04): 1-7. (Yao D P, Wu J, Hu Z X, et al.2019. Physiological mechanism and breeding strategy of saline-alkali tolerance in rice[J]. Hybrid Rice, 34(04): 1-7.) [13] 尹德东, 胡宝忠. 2006. 日本晴水稻悬浮细胞系的建立和保存[J]. 东北农业大学学报, (06): 750-754. (Yin D D, Hu B Z. 2006. Establishment and preservation of Nipponbare rice suspension cell line[J]. Journal of Northeast Agricultural University, (06): 750-754.) [14] 曾梅. 2020. 复合材料修饰电极用于水稻细胞粘弹性的测定[D]. 硕士学位论文, 湖南农业大学, 导师: 周铁安, pp. 43. (Zeng M.2020. Composite material modified electrode for the determination of viscoelasticity of rice cells[D]. Thesis for M.S., Hunan Agricultural University, supervisor: Zhou T A, pp. 43.) [15] 张煜, 周铁安, 陈宗星, 等. 2020. 宽频耗散型石英晶体微天平实时监测PEG6000胁迫下烟草细胞的粘弹性响应[J]. 农业生物技术学报, 28(12): 2270-2280. (Zhang Y, Zhou T A, Chen Z X, et al.2020. Real-time monitoring of viscoelastic response of tobacco cells under PEG6000 stress by broadband dissipative quartz crystal microbalance[J]. Journal of Agricultural Biotechnology, 28(12): 2270-2280.) [16] 周菲, 周铁安, 潘炜松. 2019. QCM实时监测五价砷胁迫对水稻悬浮细胞粘弹性的影响[J]. 激光生物学报, 28(05): 452-457, 420. (Zhou F, Zhou T A, Pan W S.2019. QCM real-time monitoring the effect of pentavalent arsenic stress on viscoelasticity of rice suspension cells[J]. Laser Biology, 28(05): 452-457, 420.) [17] 祝一文, 赵方贵, 成云峰, 等. 2018. '海稻86'耐盐碱胁迫生理机制的初步研究[J]. 青岛农业大学学报(自然科学版), 35(01): 32-39. (Zhu Y W, Zhao F G, Cheng Y F, et al.2018. Preliminary study on physiological mechanism of saline-alkaline tolerance in 'Haidao 86'[J]. Journal of Qingdao Agricultural University (Natural Science Edition), 35(01): 32-39.) [18] Ache P, Bauer H, Kollist H, et al.2010. Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements[J]. The Plant Journal, 62(6): 1072-1082. [19] Ackermann F, Stanislas T.2020. The plasma membrane-an integrating compartment for mechano-signaling[J]. Plants, 9(4): 505. [20] Bidhendi A J, Geitmann A.2019. Methods to quantify primary plant cell wall mechanics[J]. Journal of Experimental Botany, 70(14): 3615-3648. [21] Buda R, Liu Y, Yang J, et al.2016. Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity[J]. Proceedings of the National Academy of Sciences of the USA, 113(40): E5838-E5846. [22] Bund A, Chmiel H, Schwitzgebel G.1999. Determination of the complex shear modulus of polymer solutions with piezoelectric resonators[J]. Physical Chemistry Chemical Physics, 1(17): 3933-3938. [23] Chen Z, Zhou T, Hu J, et al.2021. Quartz crystal microbalance with dissipation monitoring of dynamic viscoelastic changes of tobacco BY-2 cells under different osmotic conditions[J]. Biosensors, 11(5): 136. [24] Codjoe J M, Miller K, Haswell E S.2022. Plant cell mechanobiology: Greater than the sum of its parts[J]. The Plant Cell, 34(1): 129-145. [25] EerNisse E P.1973. Extension of the double resonator technique[J]. Journal of Applied Physics, 44(10): 4482-4485. [26] Haruta M, Sabat G, Stecker K, et al.2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion[J]. Science, 343(6169): 408-411. [27] Jamil M, Bashir S, Anwar S, et al.2012. Effect of salinity on physiological and biochemical characteristics of different varieties of rice[J]. Pakistan Journal of Botany, 44(1): 7-13. [28] Kaashyap M, Ford R, Kudapa H, et al.2018. Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea[J]. Scientific Reports, 8(1): 1-19. [29] Liu Z, Hu Y, Du A, et al.2022a. Cell wall matrix polysaccharides contribute to salt-alkali tolerance in rice[J]. International Journal of Molecular Sciences, 23(23): 15019. [30] Liu Z, Østerlund I, Ruhnow F, et al.2022b. Fluorescent cytoskeletal markers reveal associations between the actin and microtubule cytoskeleton in rice cells[J]. Development, 149(12): dev200415. [31] Park H J, Kim W Y, Yun D J.2016. A new insight of salt stress signaling in plant[J]. Molecules and Cells, 39(6): 447. [32] Rivera P, Moya C, O'Brien J A.2022. Low salt treatment results in plant growth enhancement in tomato seedlings[J]. Plants, 11(6): 807. [33] Rui Y, Dinneny J R.2020. A wall with integrity: Surveillance and maintenance of the plant cell wall under stress[J]. New Phytologist, 225(4): 1428-1439. [34] Xi J, Chen J Y, Garcia M P, et al.2013. Quartz crystal microbalance in cell biology studies[J]. Journal of Biochips & Tissue Chips, 5: 1-9. [35] Yoneda A, Ohtani M, Katagiri D, et al.2020. Hechtian strands transmit cell wall integrity signals in plant cells[J]. Plants, 9(5): 604. [36] Zhou T, Marx K A, Dewilde A H, et al.2012. Dynamic cell adhesion and viscoelastic signatures distinguish normal from malignant human mammary cells using quartz crystal microbalance[J]. Analytical Biochemistry, 421(1): 164-171. [37] Zhou T A, Huang J Y, Xiong L, et al.2023. Real-time quantification of cell mechanics and functions by double resonator piezoelectric cytometry-theory and study of cellular adhesion of HUVECs[J]. Advanced Materials Interfaces, 10: 2300048. [38] Zou Y, Zhang Y, Testerink C.2022. Root dynamic growth strategies in response to salinity[J]. Plant, Cell & Environment, 45(3): 695-704. [39] Wang C, Li J, Yuan M.2007. Salt tolerance requires cortical microtubule reorganization in Arabidopsis[J]. Plant and Cell Physiology, 48(11): 1534-1547. [40] Wang C, Zhang L, Yuan M, et al.2010. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis[J]. Plant Biology, 12(1): 70-78. [41] Wang C, Zhang L J, Huang R D.2011. Cytoskeleton and plant salt stress tolerance[J]. Plant Signaling & Behavior, 6(1): 29-31.