Abstract:Gastrodia elata is a traditional Chinese medicinal herb that can be used for both medicine and food. G. elata has no roots or leaves, and can only obtain nutrients through the digestion of infected Armillaria mellea. Nitrogen nutrition is essential for the growth of G. elata and A.mellea, and glutamine synthetase (GS) plays an important role in regulating nitrogen metabolism. Previous studies have shown that overexpression of the cytoplasmic GS1 gene can improve plant nitrogen utilization, plant development, and salt stress tolerance, but the resistance of the GS1 gene to low temperature stress is still unclear. In this study, the 5' CDS of GS1 gene was screened from the transcriptome database of G. elata, and it's full length was cloned by Nested-PCR. The overexpression vector pH2GW7.0-35s-GS1 and prokaryotic expression vector pET-32a-GS1 were constructed. pET-32a-GS1 was transformed into Escherichia coli Bl21 for protein express and purification to obtain GS1 enzyme protein. The optimal pH of GS1 enzyme was 4 and the optimal temperature was 50 ℃. Under low concentration of 5 mmol/L Ca2+, Mg2+ and K+ had a promoting effect on GS1 enzyme activity. While at high concentration of 9 mmol/L metal ions had a inhibitory effect on GS1 enzyme activity. Compared with wild A. mellea, overexpression of GS1 significantly enhanced the expression levels of GS, glutamate synthase (GoGAT), glutamate dehydrogenase (GDH), glutathione reductase (GR) and glutathione peroxidase (GPX) genes related to glutamate and glutathione synthesis under low temperature conditions of 13 ℃, increased the content of proline, glutathione and soluble sugar, and reduced the content of H2O2 and malondialdehyde (MDA), significantly promoted the growth of A. mellea. These results indicated that overexpression of G. elata GS1 gene could enhance the growth ability of A. mellea under low temperature conditions. This study provids a reference for further research on enhancing growth and yield of G. elata under low temperature.
[1] 陈秀兰, 张玉忠, 高培基, 等. 2003. 对深海适冷菌Pseudomonas sp. SM9915分泌不同适冷蛋白酶的研究[J]. 海洋与湖沼, (02): 155-160. (Chen X L, Zhang Y Z, Gao P J, et al. 2003. Study on the secretion of different psychrophilic proteases by deep-sea psychrophilic bacteria Pseudomonas sp. SM9915[J]. Oceans and Lakes, (02): 155-160.) [2] 崔凤文, 焦瑞身. 1996. 头状轮生链霉菌谷氨酰胺合成酶的研究Ⅱ.酶的性质和调节[J]. 微生物学报, 36(5): 367-372. (Cui F W, Jiao R S.1996. Studies on glutamine synthetase from Streptomyces capitis Ⅱ. Properties and regulation of the enzyme[J]. Journal of Microbiology, 36(5): 367-372.) [3] 段喜华, 唐中华, 郭晓瑞. 2009. 植物谷胱甘肽的生物合成及其生物学功能[J]. 植物研究, 30(1): 98-105. (Duan X H, Tang Z H, Guo X R.2009. Plant glutathione biosynthesis and its biological functions[J]. Plant Research, 30(1): 98-105.) [4] 段学武, 庞学群, 张昭其. 2000. 草菇低温贮藏及有关生理变化研究[J]. 热带作物学报, 21(4): 75-79. (Duan X W, Pang X Q, Zhang Z Q.2000. Study on low temperature storage and related physiological changes of Volvariella volvacea[J]. Journal of Tropical Crops, 21(4): 75-79.) [5] 高俊凤. 2006. 植物生理学实验指导[M]. 高等教育出版社, 1-287. (Gao J F.2000. Guide to Plant Physiology Experiment[M]. Higher Education Press.. 1-287.) [6] 贾喜婷, 韦一昊, 谷明鑫等. 2017. 过表达TaGS1/TaGS2对烟草抗盐能力的影响及其机制[J]. 中国烟草学报, 23(5):92-97. (Jia X T, Wei Y H, Gu M X, et al.2017. Effect of overexpression of TaGS1/TaGS2 on salt tolerance of tobacco and its mechanism[J]. Journal of China Tobacco, 23(5): 92-97.) [7] 李常健, 林清华, 张楚富. 2001.高等植物谷氨酰胺合成酶研究进展[J]. 生物学杂志, 18(4): 1-3. (Li C J, Lin Q H, Zhang C F.2001. Research progress of glutamine synthetase in higher plants[J]. Journal of Biology, 18(4): 1-3.) [8] 李顺会, 申俊初, 李婧. 2020. 晴隆县天麻种植气候适宜性区划研究[J]. 现代农业科技, 12: 89-90. (Li S H, Shen J C, Li J.2020. Study on climatic suitability zoning of gastrodia elata planting in Qinglong County[J] Modern Agricultural Science and Technology, 12: 89-90.) [9] 梁宇庭, 周骏辉, 袁媛, 等. 2017. 环境胁迫影响药用真菌生长及生理生化机制的研究进展[J]. 中国现代中药, 19(12): 1780-1784. (Liang Y T, Zhou J H, Yuan Y.2017. Research progress on the mechanism of environmental stress affecting the growth, physiology and biochemistry of medicinal fungi[J]. Modern Chinese Medicine, 19(12): 1780-1784.) [10] 刘伟, 邱银清, 徐惠云, 等. 1997. 采后草菇的膜脂过氧化作用[J]. 华南农业大学学报, 18(3): 96-99. (Liu W, Qiu Y Q, Xu H Y, et al.1997. Membrane lipid peroxidation of postharvest Volvariella volvacea[J]. Journal of South China Agricultural University, 18(3): 96-99.) [11] 亓琳, 侯淑丽. 2018. 天麻高产栽培技术[J]. 人参研究, 30(1): 36-38. (Qi L, Hou S L.2018. High yield cultivation technology of Gastrodia elata[J]. Ginseng Research, 30(1): 36-38.) [12] 冉邦定, 刘敬业, 李天福. 1993. 烤烟K326成熟期五种酶动态的研究[J]. 中国烟草学报, 1(4): 13-20. (Ran B D, Liu J Y, Li T F, et al.1993. Study on dynamics of five enzymes of fule-craed tubacco K326 during ripening[J]. Acta Tabacaria Sinica, 1(4): 26-28.) [13] 申龙斌, 牛玉, 刘子记, 等. 2015. 苦瓜谷氨酰胺合成酶基因(McGS1)原核表达载体的构建及表达分析[J]. 北方园艺, (22): 110-113. (Shen L B, Niu Y, Liu Z J, et al.2015. Construction and expression analysis of prokaryotic expression vector of balsam pear glutamine synthetase gene (McGS1)[J]. Northern Horticulture, (22): 110-113.) [14] 史红梅, 张海燕, 杨彬, 等. 2015. 低温胁迫对高粱幼苗MDA含量、SOD和POD活性的影响[J]. 中国农学通报, 31(18): 74-79. (Shi H M, Zhang H Y, Yang B, et al.2015. Effect of low temperature stress on MDA content, SOD and POD activity of sorghum seedlings[J]. China Agricultural Bulletin, 31(18): 74-79.) [15] 万慧兰. 1987. 天麻休眠与温度、时间的关系[J]. 中草药, 18(2): 26-28. (Wan H L.1987. Relationship between Gastrodia elata dormancy and temperature, time[J]. Chinese Herbal Medicine, 18(2): 26-28.) [16] 王学奎, 黄见良. 2015. 植物生理生化实验原理和技术(3版)[M]. 高等教育出版社, 北京, pp. 1-324. (Wang X K, Huang J L.2015. Principles and Techniques of Plant Physiology and Biochemistry Experiment (3rd Edition)[M]. Higher Education Press, Beijing, pp. 1-324.) [17] 王嘉文, 吴刚, 徐云敏. 2019.谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J]. 分子植物育种, 17(04): 1373-1377. (Wang J W, Wu G, Xu Y M.2019. Research progress of glutamine synthetase in plant nitrogen assimilation and reuse[J]. Molecular Plant Breeding, 17(04): 1373-1377) [18] 徐锦堂. 1993. 中国天麻栽培学[M]. 北京医科大学, 中国协和医科大学联合出版社, 北京, pp. 46-49, 66, 62. (Xu J T.1993. Chinese Gastrodia elata Cultivation[M]. Beijing Medical University, China Union Press of Peking Union Medical University, Beijing, pp. 46-49, 66, 62.) [19] 杨复康, 杨燕君, 宋永宏, 等. 2021. 不同杏品种抗寒性及生理指标[J]. 北方园艺. 3: 27-32. (Yang F K, Yang Y J, Song Y H, et al.2021. Cold resistance and physiological indicators of different apricot varieties[J]. Northern Horticulture, 3: 27-32.) [20] 于涵, 张俊, 陈碧清, 等. 2022. 天麻化学成分分类及其药理作用研究进展[J]. 中草药, 53(17): 5553-5564. (Yu H, Zhang J, Chen B Q, et al.2022. Research progress on classification of chemical constituents and pharmacological effects of Gastrodia elata[J]. Chinese Herbal Medicine, 53(17): 5553-5564.) [21] 余昌俊, 王绍柏, 曹斌. 2008. 利用海拔温差调控种植天麻的研究[J]. 农业生物技术科学, 24(9): 48-53. (Yu C J, Wang S B, Cao B.2008. Research on the regulation of gastrodia elata cultivation by using altitude temperature difference[J]. Agricultural Biotechnology Science, 24(9): 48-53.) [22] 袁崇文. 2002. 中国天麻[M]. 贵州科技出版社, 贵阳, pp. 1-255. (Yuan C W.2002. Chinese Gastrodia elata[M] Guizhou Science and Technology Press, Guiyang, pp. 1-255.) [23] 张照宇, 孙建华, 陈士林, 等. 2022. 天麻种质资源及其与双菌共生分子机制研究[J]. 世界中医药, 17(13): 1819-1826. (Zhang Z Y, Sun J H, Chen S L, et al.2022. Studies on Gastrodia elata germplasm resources and its molecular mechanism of symbiosis with two bacteria[J]. World Journal of Traditional Chinese Medicine, 17(13): 1819-1826.) [24] 张志良, 瞿伟菁. 2003. 植物生理学实验指导(3版)[M]. 高等教育出版社, 北京, pp. 1-328. (Zhang Z L, Qu W J.2003. Guide to Plant Physiology Experiment (3rd Edition)[M]. Higher Education Press, Beijing, pp. 1-328.) [25] 赵麒鸣, 吴鹏, 刘鸿高, 等. 2022. 蜜环菌与天麻的共生关系研究进展[J]. 云南农业科技, 2: 56-58. (Zhao Q M, Wu P, Liu H G, et al.2002. Research progress on symbiotic relationship between Armillaria mellea and Gastrodia elata[J]. Yunnan Agricultural Science and Technology, 2: 56-58.) [26] 周春艳, 狄永国, 仇全雷, 等. 2023. 转录组和代谢组联合分析低温胁迫对天麻生长发育的影响[J]. 分子植物育种, 21(01): 110-122. (Zhou C Y, Di Y G, Qiu Q L, et al.2023. Effects of low temperature stress on growth and development of G. elata were analyzed by transcriptome and metabolome[J]. Molecular Plant Breeding, 21(01): 110-122.) [27] Cai H, Zhou Y, Xiao J H, et al.2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice[J]. Plant Cell Reports, 28: 527-537. [28] Doulis A G, Hausladen A, Mondy B, et al.1993. Antioxidant response and winter hardiness in red spruce (Picea rubens sarg.)[J]. New Phytologist, 123: 365-374. [29] Eom S H, Ahn M A, Kim E, et al.2022. Plant response to cold stress: Cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapa L. ssp. Pekinensis)[J]. Antioxidants, 11(4): 700. [30] Fuentes S I, Allen D J, Ortiz-Lopez A, et al.2001. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations[J]. Journal of Experimental Botany, 52: 1071-1081. [31] Gallais A, Hirel B.2004. An approach of the genetics of nitrogen use efficiency in maize[J]. Journal of Experimental Botany, 55(396): 295-306. [32] Gay C A, Gebicki J M.2003. Measurement of protein and lipid hydroperoxides in biological systems by the ferric-xylenol orange method[J]. Analytical Biochemistry, 315(1): 29-35. [33] Gong X, Cheng J, Zhang K S, et al.2022.Transcriptome sequencing reveals Gastrodia elata Blume could increase the cell viability of eNPCs under hypoxic condition by improving DNA damage repair ability[J]. Journal of Ethnopharmacology, 282: 114646. [34] Hirel B, Bertin P, Quilleré I, et al.2001.Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize[J]. Plant Physiology, 125(3): 1258-1270. [35] Hoshida H, Tanaka Y, Hibino T, et al.2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase[J]. Plant Molecular Biology, 43(1): 103-111. [36] Huang H, Jiang N, Zhang Y W, et al.2021. Gastrodia elata Blume ameliorates circadian rhythm disorder-induced mice memory impairment[J]. Life Sciences in Space Research, 31: 51-58. [37] James D, Borphukan B, Fartyal D, et al.2018. Concurrent overexpression of OsGS1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses[J]. Frontiers in Plant Science, 21(9): 786-804. [38] Oliveira I C, Brears T, Knight T J, et al.2002. Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration[J]. Plant Physiology, 129(3): 1170-1180. [39] Vincent R, Fraisier V, Chaillou S, et al.1997. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development[J]. Planta, 201: 424-433. [40] Wang Y L, Fu B, Pan L F, et al.2013. Overexpression of Arabidopsis Dof1, GS1 and GS2 enhanced nitrogen assimilation in transgenic tobacco grown under low-nitrogen conditions[J]. Plant Molecular Biology Reporter, 31: 886-900. [41] Zhu C G, Fan Q L, Wang W, et al.2014. Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana[J]. Gene, 536(2): 407-415. [42] Zhu C G, Zhang G M, Shen C L, et al.2015. Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization[J]. Biologia, 70(12): 1586-1596.