Genome Wide Identification and Expression Analysis of the HD-Zip Gene Family in Pinellia ternata
LIU Meng-Meng1, LIU Xiao1, YOU Qian1, BO Chen1, ZHU Yan-Fang1, DUAN Yong-Bo1, XUE Jian-Ping1, WANG De-Xin2,*, XUE Tao1,*
1 College of Life Sciences/Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants; Huaibei Normal University, Huaibei 235000, China; 2 College of Agriculture and Engineering, Heze University, Heze 274009, China
Abstract:The sprout tumble (ST) of Pinellia ternata caused by environmental sress severely limits its industrial development, and the homeodomain-leucine zipper (HD-Zip) family genes are widely involved in the regulation of plant stress response. To explore the HD-Zip genes involved in the regulation of ST in P. ternata, the HD-Zip family genes of P. ternata were identified and analyzed at the genome level in this study. It was found that 17 HD-Zip family genes were identified in P. ternata, among them, 15 of which were attached to 9 chromosomes. Evolutionary analysis showed that the identified 17 HD-Zip family members included 9 HD-Zip Ⅰ subfamily members and 8 HD-Zip Ⅱ subfamily members, all of which had highly conserved HD domains (WFQNRR) in their protein sequences. Subcellular localization prediction showed that all 17 members of the HD-Zip family were located in the nucleus, and collinearity analysis showed that 8 PtHDZ genes formed 4 pairs of homologous gene pairs, and 1 genes had a collinearity relationship with rice (Oryza sativa). The elements of hormones response, stress response, and transcription factor binding sites were contained in the promoters of PtHDZ genes via the prediction analysis of cis acting elements. Organizational expression pattern analysis revealed that the PtHDZ family genes showed differential expression in different tissues, most of which were highly expressed in roots and tubers. And the expression of 14 PtHDZs were found to be induced while 2 PtHDZs were inhibited by high temperature. This study provides genetic resources for analyzing the mechanism of ST and molecular breeding in P. ternata.
刘梦梦, 刘晓, 尤倩, 伯晨, 朱艳芳, 段永波, 薛建平, 王德信, 薛涛. 半夏HD-Zip基因家族全基因组鉴定及表达分析[J]. 农业生物技术学报, 2024, 32(11): 2540-2551.
LIU Meng-Meng, LIU Xiao, YOU Qian, BO Chen, ZHU Yan-Fang, DUAN Yong-Bo, XUE Jian-Ping, WANG De-Xin, XUE Tao. Genome Wide Identification and Expression Analysis of the HD-Zip Gene Family in Pinellia ternata. 农业生物技术学报, 2024, 32(11): 2540-2551.
[1] 高永峰, 杨丰铭, 李琴中, 等. 2018. 番茄SlWRKY31基因启动子的克隆与逆境应答模式分析[J]. 西北植物学报, 38(12): 2155-2164. (Gao Y F, Yang F M, Li Q Z, et al.2018. Cloning and analysis of stress response pattern of SlWRKY31 gene promoter from tomato[J]. Acta Botanica Boreali-Occidentalia Sinica, 38(12): 2155-2164.) [2] 胡景涛, 李彦杰, 段艳艳, 等. 2022. 桑树HD-Zip Ⅰ亚家族基因的鉴定及表达分析[J]. 林业科学研究, 35(04): 130-142. (Hu J T, Li Y J, Duan Y Y, et al.2022. Identification and expression analysis of the HD-Zip Ⅰ subfamily genes in mulberry[J]. Forest Research, 35(04): 130-142.) [3] 李铂, 彭亮, 王楠, 等. 2020. 聚乙二醇模拟干旱胁迫下半夏茎段转录组分析[J]. 中草药, 51(21): 5579-5589. (Li B, Peng L, Wang N, et al.2020. Transcriptome analysis of stems of Pinellia ternata under drought stress simulated by PEG[J]. Chinese Traditional and Herbal Drugs, 51(21): 5579-5589.) [4] 李俐, 王义, 王康宇, 等. 2018. HD-Zip基因家族的结构、功能与表达模式[J]. 分子植物育种, 16(03): 781-790. (Li L, Wang Y, Wang K Y, et al.2018. The structure, function and expression pattern of HD-Zip gene family[J]. Molecular Plant Breeding, 16(03): 781-790.) [5] 罗少. 2020. 桑树HD-Zip转录因子基因家族鉴定与表达分析[D]. 硕士学位论文, 江苏科技大学, 导师: 罗国庆, pp. 15-16. (Luo S.2020. Identification and expression analysis on HD-Zip transcription factor gene family from Morus[D]. Thesis for M.S, Jiangsu University of Science and Technology, Supervisor: Luo G Q, pp. 15-16.) [6] 祁存英, 李媛, 杨成兰, 等. 2023. 青稞HD-Zip基因家族鉴定及其在非生物胁迫下的表达特性[J]. 西北植物学报, 43(1): 66-78. (Qi C Y, Li Y, Yang C L, et al.2023. Identification of HD-Zip gene family of Tibetan hulless barley and its expression characteristics under abiotic stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 43(1): 66-78.) [7] 沈威. 2019. 茶树中与逆境相关HD-Zip转录因子的鉴定和功能初步分析[D]. 硕士学位论文, 南京农业大学, 导师: 庄静, pp. 27-28. (Shen W.2019. Identification and preliminary functional analysis of HD-Zip transcription factor related to stress in tea plant[D]. Thesis for M.S, Nanjing Agricultural University, Supervisor: Zhuang J, pp. 27-28.) [8] 施江, 熊雨婕, 张晗, 等. 2020. 遮荫影响半夏DNA甲基化的MSAP分析[J]. 中国中药杂志, 45(06): 1311-1315. (Shi J, Xiong Y J, Zhang H, et al.2020. Analysis of shading on DNA methylation by MSAP in Pinellia ternata[J]. China Journal of Chinese Materia Medica, 45(06): 1311-1315.) [9] 陶兴魁, 黄铭美, 薛建平, 等. 2019. 水杨酸刺激下半夏试管块茎悬浮培养及其生物碱的含量[J]. 中国实验方剂学杂志, 25(18): 139-144. (Tao X K, Huang M M, Xue J P, et al.2019. Suspension culture and alkaloid content of Pinelliae Rhizoma tuber under stimulation of salicylic acid[J]. Chinese Journal of Experimental Traditional Medical Formulae, 25(18): 139-144.) [10] 位欣欣, 兰海燕. 2022. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 38(8): 12-23. (Wei X X, Lan H Y.2022. Advances in the regulation of plant MYB transcription factors in secondary metabolism and stress response[J]. Biotechnology Bulletin, 38(8): 12-23.) [11] 杨金荣, 崔婉宁, 张瑜, 等. 2023. 基于转录组数据的半夏AP2/ERF基因家族鉴定及逆境响应分析[J].中国实验方剂学杂志, 29(05): 176-184. (Yang J R, Cui W N, Zhang Y, et al.2023. Identification and expression analysis of AP2/ERF Family in stress responses of Pinellia ternata based on transcriptome data[J]. Chinese Journal of Experimental Traditional Medical Formulae, 29(05): 176-184.) [12] 叶泗洪, 季美君, 陈奇, 等. 2023. 陆地棉HD-ZIP_N基因家族的全基因组分析[J]. 农业生物技术学报, 31(12): 2454-2465. (Ye S H, Ji M J, Chen Q, et al.2023. Genome-wide analysis of the HD-ZIP_N gene family in Gossypium hirsutum[J]. Journal of Agricultural Biotechnology, 31(12): 2454-2465.) [13] 张哲伟. 2022. 多年生黑麦草高温耐受性评价及HD-ZIP转录因子的育种利用[D]. 硕士学位论文, 华中农业大学, 导师: 产祝龙, pp. 20-21. (Zhang Z W.2022. Evaluation of heat tolerance of perennial ryegrass and breeding utilization of HD-ZIP transcription factor[D]. Thesis for M.S, Huazhong Agricultural University, Supervisor: Chan Z L, pp. 20-21.) [14] 周佩娜, 党静洁, 邵永芳, 等. 2023. 荆芥HD-Zip基因家族的全基因组鉴定及分析[J]. 浙江农林大学学报, 40(1): 12-21. (Zhou P N, Dang J J, Shao Y F, et al.2023. Genome-wide identification and expression analysis of HD-Zip gene family in Schizonepeta tenuifolia[J]. Journal of Zhejiang A & F University, 40(1): 12-21.) [15] Ariel F D, Manavella P A, Dezar C A, et al.2007. The true story of the HD-Zip family[J]. Trends in Plant Science, 12(9): 419-426. [16] Bo C, Liu D, Yang J R, et al.2024. Comprehensive in silico characterization of NAC transcription factor family of Pinellia ternata and functional analysis of PtNAC66 under high-temperature tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 208, 108539. [17] Bo C, Liu M M, You Q, et al.2024. Integrated analysis of transcriptome and miRNAome reveals the heat stress response of Pinellia ternata seedlings[J]. BMC Genomics, 25: 398. [18] Gao Y, Liu H, Zhang K, et al.2021. A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice[J]. Plant Cell Reports, 40(1): 187-204. [19] Guo Q, Jiang J, Yao W, et al.2021. Genome-wide analysis of poplar PtHDZ family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii × P. nigra[J]. Plant Science, 311: 111021. [20] He G, Liu P, Zhao H, et al.2020. The HD-ZIP II transcription factors regulate plant architecture through the auxin pathway[J]. International Journal of Molecular Sciences, 21(9): 3250. [21] Javed T, Shabbir R, Ali A, et al.2020. Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement[J]. Plants (Basel), 9(4): 491. [22] Li Y, Bai B, Wen F, et al.2019. Genome-wide identification and expression analysis of HD-ZIP Ⅰ gene subfamily in Nicotiana tabacum[J]. Genes (Basel), 10(8): 575. [23] Mao R, He Z.2020. Pinellia ternata (Thunb.) Breit: A review of its germplasm resources, genetic diversity and active components[J]. Journal of Ethnopharmacology, 263: 113252. [24] Mukherjee K, Brocchieri L, Bürglin T R.2009. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular Biology and Evolution, 26(12): 2775-2794. [25] Olsson A, Engstrom P, Soderman E.2004. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis[J]. Plant Molecular Biology, 55(5): 663-667. [26] Ruberti I, Sessa G, Lucchetti S, et al.1991. A novel class of proteins containing a home-2 with a closely linked leucine zipper motif[J]. The EMBO Journal, 10(7): 1787-1791. [27] Xue T, Jia H F, Wang M, et al.2024. A chromosome-level Pinellia ternata genome assembly provides insight into the evolutionary origin of ephedrine and acrid raphide formation[J]. Medicinal Plant Biology, 3: e013 [28] Xue T, Xiong Y J, Shi J, et al.2021. UHPLC MS based metabolomic approach for the quality evaluation of Pinellia ternata tubers grown in shaded environments[J]. Journal of Natural Medicines, 75(4): 1050-1057. [29] Xue T, Zhang H, Zhang Y Y, et al.2019. Full-length transcriptome analysis of shade-induced promotion of tuber production in Pinellia ternata[J]. BMC Plant Biology, 19(1): 565. [30] Yahagi T, Atsumi T, Mano S, et al.2021. Quality evaluation of Pinellia tuber by LC TOF/MS targeted to ephedrine[J]. Journal of Natural Medicines, 75(3): 692-698. [31] Yang J R, Cui W N, You Q, et al.2023. Transcriptome analysis reveals Long Non-Coding RNAs involved in shade-induced growth promotion in Pinellia ternata[J]. Frontiers in Bioscience-Landmark, 28(9): 202. [32] Zhang H, Zhang W J, Wei S, et al.2023. Identification of reference genes for gene expression analysis using RT-qPCR in Pinellia ternata[J]. Journal of Animal and Plant Sciences, 33(3): 612-619. [33] Zhang H, Zhang Z Y, Xiong Y J, et al.2021. Stearic acid desaturase gene negatively regulates the thermotolerance of Pinellia ternata by modifying the saturated levels of fatty acids[J]. Industrial Crops & Products, 166(2): 113490. [34] Zhao Y, Zhou Y, Jiang H, et al.2011. Systematic analysis of sequences and expression patterns of drought-responsive members of the PtHDZ gene family in maize[J]. PLOS ONE, 6(12): e28488.