Cloning, Expression and Preliminary Functional Analysis of LibHLH75 Gene from Lavender (Lavandula×intermedia)
Maierziyaguli•ABULAIKEMU, ZHANG Jia-Jun, YAN Zhong-Jian, LIAO Yan, SHI Mei-Lan, LI Xue-Long, WANG Ai-Fan*, SU Xiu-Juan*
College of Agriculture/Xinjiang Key Lab of Crop Improvement & Germplasm Enhancement/Lavender Research Institute, Xinjiang Agricultural University, Urumqi 830052, China
Abstract:Lavender (Lavandula) is an important aromatic crop, and the differences in the quality of its essential oil are mainly caused by variations in the content of terpenoids, such as linalool and linalyl acetate. Studying the relevant genes that may be involved in regulating the biosynthesis of essential oils in lavender can provide genetic resources for breeding excellent lavender germplasm. The basic Helix-Loop-Helix (bHLH) transcription factor family plays a crucial role in plant growth, development, and secondary metabolism. In this study, the lavender LibHLH75 gene (GenBank No. OR019688) was cloned from the 'Zahua' of lavender (Lavandula×intermedia), with an open reading frame of 831 bp, encoding 276 amino acids, which was closest to the bHLH75-like protein from Salvia splendens and bHLH75 protein from S. hispanica. qRT-PCR analysis showed that the LibHLH75 gene was expressed in different tissues of lavender and at different flowering stages of the corolla, with the highest expression level at the calyx and bud stages. The results of subcellular localization and transcriptional activation activity identification indicated that LibHLH75 encoded protein was localized in the nucleus, and had transcriptional activation activity. This study preliminary analyzed the function of LibHLH75, which provides a theoretical basis for further revealing the molecular regulatory mechanism of bHLH transcription factors in the biosynthesis of lavender terpenoids.
[1] 克拉热木·克里木江, 陈永坤, 李翠翠, 等. 2023. 薰衣草DXS基因家族的全基因组鉴定和表达分析[J]. 基因组学与应用生物学, 42(9): 919-926. (Kelaremu·K, Chen Y K, Li C C, et al.2023. Genome-wide identification and expression analysis of DXS gene family in Lavandula angustifolia[J]. Genomics and Applied Biology, 42(9): 919-926) [2] 李慧. 2019. 薰衣草萜类代谢调控分子机制及对访花昆虫影响[D]. 博士学位论文, 北京林业大学, 导师: 王华芳, 石蕾, pp.11-24. (Li H.2019. Molecular mechanism of terpenoid metabolism regulation of lavender and the influence on the flower-visiting insects[D]. Thesis for Ph.D., Beijing Forestry University, Supervisor: Wang H F, Shi L, pp.11-24.) [3] 李津津, 刘凯, 王芳, 等. 2021. 核桃响应低温胁迫转录因子ICE1基因的克隆与分析[J]. 林业与生态科学, 36(3): 293-300. (Li J J, Liu K, Wang F, et al.2021. Cloning and analysis of the cold stress transcription factor ICE1 gene in Juglans regia[J]. Forestry and Ecological Science, 36(3): 293-300.) [4] 沙伟, 李婧, 张梅娟, 等. 2021. 薰衣草及其精油在医疗应用中的研究进展[J/OL]. 分子植物育种, 1-8. ( Sha W, Li J, Zhang M J, et al.2021. Research progress of lavender and its essential oil in medical treatments[J/OL]. Molecular Plant Breeding, 1-8.) [5] 唐彪, 胡增辉, 冷平生. 2018. 不同花期‘西伯利亚'百合花瓣单萜合成途径转录组分析[J]. 植物科学学报, 36(2): 252-263. (Tang B, Hu Z H, Leng P S.2018. Transcriptome analysis of the monoterpene biosynthesis pathway in petals of Lilium‘ Siberia' at different flowering stages[J]. Plant Science Journal, 36(2): 252-263.) [6] 童红, 唐军, 张正方. 2013. 薰衣草及其精油的研究进展[J]. 香料香精化妆品, 6: 55-58. (Tong H, Tang J, Zhang Z F.2013. Study on the research development of lavender and its essential oil[J]. Flavour Fragrance Cosmetics, 6: 55-58.) [7] 王婷甄, 孙燕川, 唐文琨, 等. 2021. 叶用莴苣无缝克隆构建LsE3基因过表达载体和新RNAi载体及遗传转化体系优化[J].中国农学通报, 37(11): 15-23. (Wang T Z, Sun Y C, Tang W K, et al.2021. Construction of LsE3 gene overexpression vector and a new RNAi vector by seamless cloning and optimization of genetic transformation system of leaf lettuce[J].Chinese Agricultural Science Bulletin, 37(11): 15-23.) [8] 吴姝菊, 于丽杰, 艾燕. 2012. 唇形科植物腺毛发育及腺毛分泌功能的研究进展[J]. 北方园艺, 10: 194-196. (Wu S J, Yu L J, Ai Y. 2012. Research progressof labiatae plant trichome development and trichome secretion function[J]. Northern Horticulture, (10): 194-196.) [9] 尹松松, 苏秀娟, 龚林涛, 等. 2021. 薰衣草1-脱氧-D-木酮糖-5-磷酸还原异构酶基因LaDXR的克隆及表达分析[J]. 分子植物育种, 19(7): 2193-2199. (Yin S S, Su X J, Gong L T, et al.2021. Cloning and expression analysis of lavender 1-deoxy-d-xylulose-5-phosphate reductoisomerase gene LaDXR[J]. Molecular Plant Breeding. 19(7): 2193-2199.) [10] 于冰, 田烨, 李海英, 等. 2019. 植物bHLH转录因子的研究进展[J].中国农学通报, 35(9): 75-80. (Yu B, Tian Y, Li H Y, et al.2019. Research progress of plant bHLH transcription factor[J]. Chinese Agricultural Science Bulletin, 35(9): 75-80.) [11] 余兰, 王浩然, 张莹,等. 2022. 转录因子MYCs调控番茄表皮毛萜类化合物的分子机制研究进展[J]. 中国农学通报, 38(6): 87-93. (Yu L, Wang H R, Zhang Y, et al.2022. Transcription factor MYCs regulating terpenoids in tomato trichomes: Research progress on molecular mechanism[J]. Chinese Agricultural Science Bulletin, 38(6): 87-93.) [12] 张雪松, 裴建军, 赵林果, 等. 2016. 不同品种桂花转录组分析及桂花精油成分差异的初步探讨[J].天然产物研究与开发, 28(4): 529-535. (Zhang X S, Pei J J, Zhao L G, et al.2016. Transcriptome analysis of different osmanthus reveals insight into the difference of Osmanthus oil components[J]. Natural Product Research and Development, 28(4): 529-535.) [13] Chatel G, Montiel G, Pré M, et al.2003. CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter[J]. Journal of Experimental Botany, 54(392): 2587-2588. [14] Chuang Y C, Hung Y C, Tsai W C, et al.2018. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids[J]. Journal of Experimental Botany, 69(18): 4363-4377. [15] Goncalves S, Romano A.2013. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites[J]. Biotechnology Advances, 31(2): 166-174. [16] Guo D L, Kang K C, Wang P, et al.2020. Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender[J]. Scientific Reports, 10(1): 6933. [17] Hao Y Q, Zong X M, Ren P, et al.2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. International Journal of Molecular Sciences, 22(13): 7152. [18] Heim M, Jakoby M, Werber M, et al.2003. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity[J]. Molecular Biology and Evolution, 20(5): 735-747. [19] Hong G J, Xue X Y, Mao Y B, et al.2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 24(6): 2635-2648. [20] Spyropoulou E A, Haring M A, Schuurink R C.2014. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters[J]. BMC Genomics, 15(1): 402. [21] Van Moerkercke A, Steensma P, Schweizer F, et al.2015. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus[J]. Proceedings of the National Academy of Sciences of the USA, 112(26): 8130-8135. [22] Woronuk G, Demissie Z, Rheault M, et al.2011. Biosynthesis and therapeutic properties of lavandula essential oil constituents[J]. Planta Medica, 77(01): 7-15. [23] Xing B C, Liang L J, Liu L, et al.2018. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots[J]. Plant Cell Reports, 37(12): 1681-1692. [24] Yang Z Z, Li Y Q, Gao F Z, et al.2020. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana[J]. Journal of Experimental Botany, 71(14): 4140-4158. [25] Zhang H T, Hedhili S, Montiel G, et al.2011.The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus[J]. The Plant Journal, 67(1): 61-71. [26] Zhang J H, Lv H Z, Liu W J, et al.2020. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza[J]. Chinese Herbal Medicines, 12(3): 237-246. [27] Zhou Y Y, Sun W, Chen J F, et al.2016. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Scientific Reports, 6: 22852.