Identification of NtNRAMP2 Gene and Its Function Analysis in Cadmium Absorption in Nicotiana tabacum
YANG Yuan-Yuan1, CHENG Lan1, XU Jia-Di1, LI Yan-Yan1, DENG Zhao-Long1, HAO Hao-Hao2, WANG Ping-Ping3, JIN Wei-Huan1,*, GUO Hong-Xiang1,*
1 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; 2 Zhumadian Branch of Henan Province Tobacco Company, Zhumadian 463000, China; 3 Shaanxi Branch of China National Tobacco Corporation, Xi'an 710061, China
Abstract:Natural resistance associated macrophage proteins (NRAMPs) play an important role in metal transport in the transmembrane. To investigate the role of tobacco (Nicotiana tobacum) NRAMP genes in heavy metal Cd uptake and transport, a NRAMP subfamily gene, named NtNRAMP2 (GenBank No. OP972862), was cloned from cultivated tobacco 'K326' in this study. Bioinformatics analysis and subcellular localization were carried out to clarify the biological function of the NtNRAMP2, and its expression level in tissue specificity and under exogenous Cd, ABA and ethylene treatment were analyzed by qPCR. Sequence analysis showed that the full-length CDS of tobacco NtNRAMP2 gene was 1 629 bp, encoding 542 amino acids, containing 4 exons and 10 transmembrane structural domains. Evolutionary analyses revealed that NtNRAMP2 was most closely related to tomato (Lycopersicon esculentum) as well as potato (Solanum tuberosum), subcellularly localised in the endoplasmic reticulum and vesicles. qPCR results showed that NtNRAMP2 gene was expressed in different tissues of tobacco, but the expression was highest in the roots. NtNRAMP2 expression was significantly increased under different concentrations and times of Cd stress, and NtNRAMP2 gene expression was also triggered in tobacco roots by both exogenous ABA and ethylene. Meanwhile, NtNRAMP2 overexpression vector was constructed and 18 NtNRAMP2 overexpressing transgenic tobacco plants were obtained by the Agrobacterium tumefaciens mediated transformation method. This study provides a reference for further exploration to study the function of NtNRAMP2.
杨园园, 程岚, 许佳迪, 李燕燕, 邓兆龙, 郝浩浩, 王平平, 金维环, 郭红祥. 烟草NtNRAMP2基因的鉴定及其在镉吸收中功能分析[J]. 农业生物技术学报, 2023, 31(10): 2035-2047.
YANG Yuan-Yuan, CHENG Lan, XU Jia-Di, LI Yan-Yan, DENG Zhao-Long, HAO Hao-Hao, WANG Ping-Ping, JIN Wei-Huan, GUO Hong-Xiang. Identification of NtNRAMP2 Gene and Its Function Analysis in Cadmium Absorption in Nicotiana tabacum. 农业生物技术学报, 2023, 31(10): 2035-2047.
[1] 安婷婷, 黄帝, 王浩, 等. 2021. 植物响应镉胁迫的生理生化机制研究进展[J]. 植物学报, 56(03): 347-362. (An T T, Huang D, Wang H, et al.2021. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress[J]. Chinese Bulletin of Botany, 56(03): 347-362.) [2] 陈可欣, 蒋贤达, 朱祝军, 等. 2020. 植物NRAMP家族参与金属离子吸收和分配的研究进展[J]. 植物生理学报, 56(03): 345-355. (Chen K X, Jiang X D, Zhu Z J, et al.2020. Advances in the study of plant NRAMP family involved in metal ion absorption and distribution[J]. Plant Physiology Journal, 56(03): 345-355.) [3] 陈良, 隆小华, 郑晓涛, 等. 2011. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究[J]. 草业学报, 20(06): 60-67. (Chen L, Long X H, Zheng X T, et al.2011. Effect on the photosynthetic characteristics of Cd uptake and translocation in seedlings of two Helianthus tuberosus varieties[J]. Acta Prataculturae Sinica, 20(06): 60-67.) [4] 李晓锋, 丁豪杰, 苏奇倩, 等. 2022. 降低烟草吸收土壤镉的钝化技术及其机理研究进展[J]. 环境工程技术学报, 12(03): 893-904. (Li X F, Ding H J, Su Q Q, et al.2022. Research progress on passivation technologies and their mechanism of reducing soil cadmium uptake by tobacco[J]. Journal of Environmental Engineering Technology, 12(03): 893-904.) [5] 徐丽萍, 梁乐缤, 李兵, 等. 2022. 不同修复技术对土壤有效态镉含量及作物镉吸收的影响[J]. 江苏农业科学, 50(01): 207-211. (Xu L P, Liang L B, Li B, et al.2022. Effects of different remediation techniques on soil available cadmium contents and crop cadmium uptake[J]. Jiangsu Agricultural Sciences, 50(01): 207-211.) [6] 徐琳, 张泽, 吕贤哲, 等. 2018. 烟草NtD14基因的遗传转化及其功能[J]. 热带生物学报, 9(04): 401-408. (Xu L, Zhang Z, Lv X Z, et al.Characterization of NtD14 by overexpression in Nicotiana tabacum L.[J]. Journal of Tropical Biology, 9(04): 401-408.) [7] 尹卓然, 轩栋栋, 李晨依, 等. 2022. 烟草NtNRAMP3b的克隆及功能分析[J]. 生物技术通报, 38(12): 175-183. (Yi Z R, Xuan D D, Li C Y, et al.2022. Cloning and functional analysis of gene NtNRAMP3b in Nicotiana Tabacum[J]. Biotechnology Bulletin, 38(12): 175-183.) [8] 余沁, 何林燊, 霍春松, 等. 2022. 烟草NRAMP家族全基因组鉴定及响应重金属胁迫的表达分析[J]. 分子植物育种, 20(05): 1496-1504. (Yu Q, He L S, Huo C L, et al.2022. Genome-wide identification of NRAMP family and epression analysis in response to heavy metal stress in Nicotiana tabacum L.[J]. Molecular Plant Breeding, 20(05): 1496-1504. [9] Alejandro S, Cailliatte R, Alcon C, et al.2017. Intracellular distribution of manganese by the trans-golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis[J]. The Plant Cell, 29(12): 3068-3084. [10] Bashir W, Anwar S, Zhao Q, et al.2019. Interactive effect of drought and cadmium stress on soybean root morphology and gene expression[J]. Ecotoxicology and Environmental Safety, 175: 90-101. [11] Cailliatte R, Lapeyre B, Briat J F, et al.2009. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. The Biochemical Journal, 422(2): 217-228. [12] Castaings L, Alcon C, Kosuth T, et al.2021. Manganese triggers phosphorylation-mediated endocytosis of the Arabidopsis metal transporter NRAMP1[J]. The Plant Journal : for Cell and Molecular Biology, 106(5): 1328-1337. [13] Chen C, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 13(8): 1194-1202. [14] Dong Q, Fang J, Huang F, et al.2019. Silicon amendment reduces soil cd availability and Cd uptake of two pennisetum species[J]. International Journal of Environmental Research and Public Health, 16(9): 1624. [15] Fan S K, Fang X Z, Guan M Y, et al.2014. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake[J]. Frontiers in Plant Science, 5: 721. [16] Fu D, Zhang Z, Wallrad L, et al.2022. Ca2+-dependent phosphorylation of NRAMP1 by CPK21 and CPK23 facilitates manganese uptake and homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 119(40): e2204574119. [17] Gao H, Xie W, Yang C, et al.2018. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency[J]. The New Phytologist, 217: 179-193. [18] Haider F U, Liqun C, Coulter J A, et al.2021. Cadmium toxicity in plants: Impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety, 211: 111887. [19] Ihnatowicz A, Siwinska J, Meharg A A, et al.2014. Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures[J]. The New Phytologist, 202(4): 1173-1183. [20] Jia H, Yin Z, Xuan D, et al.2022. Mutation of NtNRAMP3 improves cadmium tolerance and its accumulation in tobacco leaves by regulating the subcellular distribution of cadmium[J]. Journal of Hazardous Materials, 432: 128701. [21] Khan N A, Asgher M, Per T S, et al.2016. Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard[J]. Frontiers in Plant Science, 7: 1628. [22] Kučerová D, Kollárová K, Zelko I, et al.2014. Galactoglucomannan oligosaccharides alleviate cadmium stress in Arabidopsis[J]. Journal of Plant Physiology,171(7): 518-524. [23] Lanquar V, Lelièvre F, Bolte S, et al.2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 24: 4041-4051. [24] Li J, Wang Y, Zheng L, et al.2019. The intracellular transporter AtNRAMP6 is involved in Fe homeostasis in Arabidopsis[J]. Frontiers in Plant Science, 10: 1124. [25] Li L, Zhu Z, Liao Y, et al.2022. NRAMP6 and NRAMP1 cooperatively regulate root growth and manganese translocation under manganese deficiency in Arabidopsis[J]. The Plant Journal : for Cell and Molecular Biology, 110: 1564-1577. [26] Meng J G, Zhang X D, Tan S K, et al.2017. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP1 mediated by miR167 in Brassica napus[J]. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 30(6): 917-931. [27] Nevo Y, Nelson N.2006. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 1763(7): 609-620. [28] Qin L, Han P, Chen L, et al.2017. Genome-wide identification and expression analysis of NRAMP family genes in soybean (Glycine Max L.)[J]. Frontiers in Plant Science, 8: 1436. [29] Sasaki A, Yamaji N, Yokosho K, et al.2012. NRAMP5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant cell, 24(5): 2155-2167. [30] Takahashi R, Ishimaru Y, Senoura T, et al.2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 62(14): 4843-4850. [31] Tang Z, Cai H, Li J, et al.2017. Allelic variation of NtNRAMP5 associated with cultivar variation in cadmium accumulation in tobacco[J]. Plant & Cell Physiology, 58(9): 1583-1593. [32] Thomine S, Wang R, Ward J M, et al.2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to NRAMP genes[J]. Proceedings of the National Academy of Sciences of the USA, 97(9): 4991-4996. [33] Tian W, He G, Qin L, et al.2021. Genome-wide analysis of the NRAMP gene family in potato (Solanum tuberosum): Identification, expression analysis and response to five heavy metals stress[J]. Ecotoxicology and Environmental Safety, 208: 111661. [34] Wang S, Liu Y, Kariman K, et al.2021. Co-cropping indian mustard and silage maize for phytoremediation of a cadmium-contaminated acid paddy soil amended with peat[J]. Toxics, 9(5): 91. [35] Yue X, Song J, Fang B, et al.2021. BcNRAMP1 promotes the absorption of cadmium and manganese in Arabidopsis[J]. Chemosphere, 283: 131113. [36] Zhang J, Zhang M, Song H, et al.2020. A novel plasma membrane-based NRAMP transporter contributes to Cd and Zn hyperaccumulation in Sedum alfredii Hance[J]. Environmental and Experimental Botany, 176: 104121.