Transcriptome Analysis of Resistant and Susceptible Inbred Line of Maize (Zea mays) in Response to Early Infection of Cochliobolus heterostrophus
GAN Lin1, LAN Cheng-Zhong1, RUAN Miao-Hong2, LIU Xiao-Fei1, HUANG Wei-Qun2, DAI Yu-Li1,*, YANG Xiu-Juan1,*
1 Institute of Plant Protection/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2 Fujian Seed Station, Fuzhou 350001, China
Abstract:Southern leaf blight was an important disease in maize planting region of the world. There were significant differences in resistance of maize (Zea mays) cultivar with different genetic backgrounds to the disease. In order to understand response profiles for gene expression in maize to early infection of Cochliobolus heterostrophus, transcriptional data in the resistant cultivar ('Mo17-R') and susceptible cultivar ('Luo31-S') of maize inbred line at 12 and 24 h after inoculation were analyzed using the transcriptome analyses. The results demonstrated that 11 416 and 11 027 differentially expressed genes (DEGs) were found in 'Mo17-R' and 'Luo31-S' after inoculation by C. heterostrophus, respectively. GO enrichment and KEGG metabolic pathway analysis revealed that the DEGs were most rich in the terms of cell, cell part, organelle, membrane, binding, catalytic activity, metabolic process, cellular process and single-organism process, which were also most rich in the pathways of phenylpropanoid biosynthesis, signal transduction, plant-pathogen interaction, starch and sucrose metabolism. Among the enriched pathways associated with resistance, the pathways of phenylpropanoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction were common in 'Mo17-R' and 'Luo31-S', while the DEGs involved in terpenoid biosynthesis pathway were only enriched in 'Luo31-S'. Furthermore, theses DEGs related to peroxidase, cinnamyl alcohol dehydrogenase, ethylene-responsive transcription factor, cyclic nucleotide-gated ion channel, cytochrome P450 were specifically induced in the resistant inbred line ('Mo17-R'), while these DEGs were down-regulated or less induced in the susceptible inbred line ('Luo31-S'). It was speculated that these genes could play an important role in disease resistance for resistant maize at the early stage of C. heterostrophus infection. These results provides a theoretical basis for further exploitation of molecular mechanisms underlying the interaction between maize and C. heterostrophus, and maize resistance to the pathogen.
甘林, 兰成忠, 阮妙鸿, 刘晓菲, 黄伟群, 代玉立, 杨秀娟. 抗感玉米自交系对小斑病菌早期侵染反应的转录组分析[J]. 农业生物技术学报, 2023, 31(3): 460-474.
GAN Lin, LAN Cheng-Zhong, RUAN Miao-Hong, LIU Xiao-Fei, HUANG Wei-Qun, DAI Yu-Li, YANG Xiu-Juan. Transcriptome Analysis of Resistant and Susceptible Inbred Line of Maize (Zea mays) in Response to Early Infection of Cochliobolus heterostrophus. 农业生物技术学报, 2023, 31(3): 460-474.
[1] 陈英, 谭碧癑, 黄敏仁. 2012. 植物天然免疫系统研究进展[J]. 南京林业大学学报(自然科学版), 36(1): 129-136. (Chen Y, Tang B Y, Huang M R.Recent advances in plant immune system[J]. Journal of Nanjing Forestry University (Natural Science Edition), 36(1): 129-136.) [2] 郭宁, 马井玉, 张海剑, 等. 2017. 苯醚甲环唑和丙环唑对黄淮海夏玉米区主要叶斑病的防治效果[J]. 植物保护, 43(4): 213-217, 232. (Guo N, Ma J Y, Zhang H J, et al.2017. Control efficacy of difenoconazole and propiconazole on leaf spots in summer corn growing region in Huan huaihai[J]. Plant Protection, 43(4): 213-217, 232.) [3] 韩彦卿, 韩渊怀, 张春来, 等. 2019. 水稻幼穗与Ustilaginoidea virens互作早期的转录组分析[J]. 植物病理学报, 49(3): 296-305. (Han Y Q, Han Y H, Zhang C L, et al.2019. Transcriptomic analysis of early interaction between rice young spikelets and Ustilaginoidea virens[J]. Acta Phytopathologica Sinica, 49(3): 296-305.) [4] 蒋选利, 李振岐, 康振生. 2001. 过氧化物酶与植物抗病性研究进展[J]. 西北农林科技大学学报(自然科学版), 29(6): 124-129. (Jiang X L, Li Z Q, Kang Z S.2001. The recent progress of research on peroxidase in plant disease resistance[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 29(6): 124-129.) [5] 李嘉鑫, 李盈, 滕晓瞳, 等. 2018. 转录组分析毛白杨响应氧化胁迫的基因表达模式变化[J]. 植物学研究, 7(2): 186-195. (Li J X, Li Y, Teng X T, et al.2018. Transcriptome analysis of gene expression patterns of Populus tomentosa in response to oxidative stress[J]. Botanical Research, 7(2): 186-195.) [6] 李珂, 马良, 杜鹏飞, 等. 2015. 玉米萜类植保素代谢关键基因对小斑病侵染的防御响应分析[J]. 西北植物学报, 35(9): 1776-1780. (Li K, Ma L, Du P F, et al.2015. Gene expression of maize terpenoid phytoalexin metabolism in response to southern leaf blight[J]. Acta Botanica Boreali-Occidentalia Sinica, 35(9): 1776-1780.) [7] 刘国胜, 黄梧芳. 1987. 玉米小斑病菌相对寄生适合度属性变化的初步研究[J]. 河北农业大学学报, 10(3): 27-35. (Liu G S, Huang W F.1987. A preliminary study on the change of relative parasitical fitness of Zea mays[J]. Journal of Hebei Agricultural University, 10(3): 27-35.) [8] 刘贺娟, 李悦鹏, 刘威, 等. 2016. 接种枯萎病菌对甜瓜木质素合成相关酶活性及CmCADs表达的影响[J]. 中国农业科学, 49(11): 2153-2163. (Liu H J, Li Y P, Liu W, et al.2016. Effects of Fusarium oxysporum f. sp. melonis on lignin, activities of lingin-related enzymes and genes expressions of CmCADs in oriental melon (Cucumis melo var. makuwa Makino)[J]. Scientia Agricultura Sinica, 49(11): 2153-2163.) [9] 刘永杰, 马传禹, 马雪娜, 等. 2016. 玉米抗禾谷镰刀菌的转录组分析[J]. 作物学报, 42(8): 1122-1133. (Liu Y J, Ma C Y, Ma X N, et al.2016. Transcriptional analysis of maize resistance against Fusarium graminearum[J]. Acta Agronomica Sinica, 42(8): 1122-1133.) [10] 罗延青, 王云月, 俎峰, 等. 2019. 芸薹根肿菌侵染早期甘蓝型油菜转录组分析[J]. 中国油料作物学报, 41(3): 421-434. (Luo Y Q, Wang Y Y, Zu F, et al.2019. Transcriptome analysis of Brassica napus-Plasmodiophora brassicae interaction during early infection[J]. Chinese Journal of Oil Crop Sciences, 41(3): 421-434.) [11] 莫纪波, 李大勇, 张慧娟, 等. 2011. ERF转录因子在植物对生物和非生物胁迫反应中的作用[J]. 植物生理学报,47(12): 1145-1154. (Mo J B, Li D Y, Zhang H J, et al.2011. Roles of ERF transcription factors in biotic and abiotic stress response in plants[J]. Plant Physiology Journal, 47(12): 1145-1154.) [12] 裴静宇, 高锋, 杨彦文, 等. 2007. 玉米小斑病重要流行环节的初步定量研究-Ⅰ.孢子萌发侵入、病斑潜育显症及扩展[J].吉林农业大学学报, 29(1): 28-32. (Pei J Y, Gao F, Yang Y W, et al.2007. Preliminary quantitative studies on important epidemic links of Bipolaris maydis-I. spore germination penetration, incubation and expand of lesion[J]. Journal of Jilin Agricultural University, 29(1): 28-32.) [13] 王振营, 王晓鸣. 2019. 我国玉米病虫害发生现状、趋势与防控对策[J]. 植物保护, 45(1): 1-11. (Wang Z Y, Wang X M.2019. Current status and management strategies for corn pests and diseases in China[J]. Plant Protection, 45(1): 1-11.) [14] 许勇, 王永健, 葛秀春, 等. 2000. 枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系[J]. 果树科学, 17(2): 123-127. (Xu Y, Wang Y J, Ge X C, et al.2000. The relation between the induced constriction resistance and changes in activities of related enzymes in watermelon seedlings after infection by Fusarium oxysporum f. sp. Niveum[J]. Journal of Fruit Science, 17(2): 123-127.) [15] 叶坤浩, 龚国淑, 祁小波, 等. 2015. 几种栽培措施对玉米纹枯病和小斑病的影响[J]. 植物保护, 41(4): 154-159. (Ye K H, Gong G S, Qi X B, et al.2015. Effect of cultivation measures on sheath blight and southern leaf blight of corn[J]. Plant Protection, 41(4): 154-159.) [16] 赵胡, 李裕红. 2012. 植物ABC转运蛋白研究综述[J].海峡科学, (2): 13-16. (Zhao H, Li Y H. 2012. A review on ABC transporters in plants [J]. Hai Xia Sciences, (2): 13-16.) [17] Abdi H.2007. The bonferroni and sidák corrections for multiple comparisons[C]//, Salkind N (eds.).Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage, pp. 103-107. [18] Allardyce J A, Rookes J E, Hussain H I, et al.2013. Transcriptional profiling of Zea may roots reveals roles for jasmonic acid and terpenoids in resistance against Phytophthora cinnamomi[J]. Functional and Integrative Genomics, (13): 217-228. [19] Anders S, Huber W.2010. Differential expression analysis for sequence count data[J]. Genome Biology, 11(10): R106. [20] Bellincampi D, Cervone F, Lionetti V.2014. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J]. Frontiers in Plant Science, 5: 228. [21] Berrocal-Lebo M, Molina A, Solano R.2002. Constitutive expression of ETHYLENE--RESPONSE--FACTOR 1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. The Plant Journal, 29(1): 23-32. [22] Boyle E I, Weng S A, Gollub J, et al.2004. GO: TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes[J]. Bioinformatics, 20(18): 3710-3715. [23] Chao J Q, Jin J, Wang D, et al.2014. Cytological and transcriptional dynamics analysis of host plant revealed stage specific biological processes related to compatible rice-Ustilaginoidea virens interaction[J]. PLOS ONE, 9(3): e91391. [24] Clough S J, Fengler K A, Yu I.2000. The Arabidopsis dndl defense, no death gene encodes a mutated cyclic nucleotide-gated ion channel[J]. Proceedings of the National Academy of Sciences of the USA, 97(16): 9323-9328. [25] Coelho C A, Horta M, Neves D, et al.2006. Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi[J]. Physiological and Molecular Plant Pathology, 69: 62-72. [26] Fonseca J P, Menossi M, Thibud-Nissen F, et al.2010. Functional analysis of a TGA factor binding site located in the promoter region controlling salicylic acid induced NMN-1 expression in Arabidopsis[J]. Geneticsand Molecular Research, 9(1): 167-175. [27] Hrdlickova R, Toloue M, Tian B.2017. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdiscip Reviews RNA, 8(1):e1364. [28] Jones J D G, Dang J L.2006. The plant immune system[J]. Nature, 444(7117): 323-329. [29] Kanehisa M, Araki. M, Goto S, et al.2008. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 36(Database issue): D480-D484. [30] Lewis L A, Polanski K, de Torres-Zabala M, et al.2015. Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000[J]. The Plant Cell, 27(11): 3038-3064. [31] Li C Y, Deng G M, Yang J, et al.2012. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4[J]. BMC Genomics, (13): 374. [32] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 25(4): 402-408. [33] Nakashima K, Ito Y, Yamaguchi-Shinozaki K.2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidpsis and grasses[J]. Plant Physiology, 149(1): 88-95. [34] Pal I, Singh V, Gogoi R, et al.2015. Characterization of Bipolaris maydis isolates of different maize cropping zones of India[J]. Indian Phytopathology, 68(1): 63-66. [35] Sara M, Eleonora C, Francesca S, et al.2016. Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinum-Rhizoctonia solani interaction[J]. Frontiers in Plant Science, (7): 1109. [36] Sun Y, Wu Y F, Zhao Y, et al.2013. Molecular cloning and biochemical characterization of two cinnamyl alcohol dehydrogenases from a liverwort Plagiochasma appendiculatumn[J]. Plant Physiology and Biochemistry, (70): 133-141. [37] Tian W, Hou C C, Ren Z J, et al.2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity[J]. Nature, 572(7767): 131-135. [38] Trapnell C, Roberts A, Goff L, et al.2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature protocols, 7(3): 562-578. [39] Tronchet M, Balaque C, Kroj T, et al.2010. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis[J]. Molecular Plant Pathology, 11(1): 83-92. [40] Tsukiboshi T, Koga H, Uematsu T.1992. Components of partial resistance to southern corn leaf blight caused by Bipolaris maydis race O in six corn inbred lines[J]. Japanese Journal of Phytopathology, 58(4): 528-533. [41] Wang X M, Zhang Y H, Xu X D, et al.2014. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases[J]. The Crop Journal, (2): 213-222. [42] Wang Z, Gerstein M, Snyder M.2009. RNA-Seq: A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 10(1): 57-63. [43] Xie C, Mao X Z, Huang J J, et al.2011. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 39(Web Server issue): 316-322. [44] Xu Z S, Chen M, Li L C, et al.2008. Functions of the ERF transcription factor family in plants[J]. Canadian Journal of Botany, 86(9): 969-977. [45] Yang C, Li W, Cao J D, et al.2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice[J]. The Plant Journal, 89(2) : 338-353. [46] Yoshihiro K, Youko O, Hiroyuki K, et al.2012. Simultaneous RNA-Seq Analysis of a mixed transcriptome of rice and blast fungus interaction[J]. PLoS ONE, 7(11): e49423. [47] Zhang S P, Xiao Y N, Zhao J R, et al.2013. Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize[J]. Molecular Genetics and Genomics, (288): 205. [48] Zhao Y, Bi K, Gao Z X, et al.2017. Transcripyome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection[J]. Frontiers in Microbiology, (8): 673.