Cloning and Expression Analysis of LpluF3′5'H in Lupinus polyphyllus 'Lupine'
HU Jun-Shu, ZHU Yun-Tao, ZHAO Yi-Ran, YANG Jie, SUN Ting-Ting, HE Heng-Bin*
Beijing Key Laboratory of Flower Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture/Beijing Laboratory of Urban and Rural Ecological Environment/Key Laboratory of Genetics and Breeding in Forest Trees & Ornamental Plants Ministry of Education, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
Abstract:The flavonoid-3', 5'-hydroxylase (F3′5′H) gene is crucial for the development of blue flowers in nature. To provide more resources and reference for blue flower breeding by cloning and expression analysis of F3′5′H in Lupinus polyphyllus, the petals of L. polyphyllus 'Lupine' were used as the material to clone LpluF3′5′H and the sequence was used for bioinformatics analysis by software such as MEGA 10.0 and online websites. The subcellular localization of LpluF3'5'H protein was determined by tobacco injection method. qPCR was used to analyze the expression of LpluF3′5′H in petals with different colors and developmental stages. The LpluF3′5′H cDNA sequence had the encoding region of 1 620 bp encoding 539 amino acids, and was named LpluF3′5′H (GenBank No. OQ657278). Bioinformatics predicted that LpluF3′5′H belongs to the CYP75A subfamily, cytochrome P450 superfamily. Phylogenetic analysis revealed that the protein encoded by LpluF3′5′H was the highest similarity to the F3'5'H protein of L. angustifolius, and the monocotyledonous plants F3'5'H protein clustered into another family. Subcellular localization showed that LpluF3'5'H was localized in chloroplasts. qPCR analysis indicated that the expression of LpluF3′5′H could be detected in different development stages and petals. Besides, LpluF3′5′H showed the stronger expression in 'Lupine Blue' and lower in 'Lupine White'. In the different developmental stages of 'Lupine Blue', the expression levels of LpluF3′5′H peaked in the second developmental stage and then decreased. Among the different petals of 'Lupine Blue', LpluF3′5′H was the most highly expressed in the wings, followed by the vexils, and lowest expressed in the keels. LpluF3′5′H might play an important role in the flower color formation of 'Lupine Blue', and the study provides a basis for further research into the flower color mechanism of blue-flowered L. polyphyllus formation.
[1] 戴思兰, 洪艳 . 2016. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J]. 中国农业科学, (3): 529-542. (Dai S L, Hong Y. 2016. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J]. Scientia Agricultura Sinica, (3): 529-542.) [2] 贾星月 .2017. pCAMBIA1300-AFH16-GFP 重组质粒的构建及纯合转基因拟南芥植株的筛选[D]. 硕士学位论文 , 山西师范大学 , 导师 : 韩榕 , pp. 20-22. (Jia X Y.2017. Construction of pCAMBIA1300-AFH1-GFP recombinant plasmid and screening of homozygous transgenic Arabidopsis plants[D]. Thesis for M. S., Shanxi Normal University, Supervisor: Han R, pp. 20-22.) [3] 刘安成, 王亮生, 王庆, 等. 2011. 不同土壤 pH 对多叶羽扇豆花色影响的研究[J]. 中国农学通报, 27(22): 125-129. (Liu A C, Wang L S, Wang Q, et al. 2011. Study on the effect of flower color of Lupinus polyphyllus in different soil pH[J]. Chinese Agricultural Science Bulletin, 27(22): 125-129.) [4] 刘安成, 王庆, 余刚, 等. 2012. 多叶羽扇豆花色与花青苷分析[J]. 西北农业农学报 , 21(3): 164-169. (Liu A C, Wang Q, Yv G, et al. 2012. Flower color and anthocyanins of Lupinus polyphyllus[J]. Acta Agriculturae Boreali- occidentalis Sinica, 21(3): 164-169.) [5] 刘燕 .2016. 园林花卉学[M]. 北京: 中国林业出版社·教育出版分社, pp. 265-266. (Liu Y.2016. Landscape Horticulture[M]. China Forestry Publishing House·Educational Publishing Branch, Beijing, China, pp. 265-266.) [6] 马璐琳, 王祥宁, 贾文杰, 等. 2015. 黄草乌 Av-F3′5′H 基因的克隆与表达分析[J]. 西南农业学报 , 28(06): 2438-2443. (Ma L L, Wang X N, Jia W J, et al. 2015. Cloning and expression pattern analysis of Av-F3′5′H gene from Aconitum vilmorinianum[J]. Southwest China Journal of Agricultural Sciences, 28(06): 2438-2443.) [7] 孟丽. 2006. 蓝色花形成关键基因的分离及其表达分析[D].博士学位论文, 北京林业大学, 导师: 戴思兰, pp. 20-22. (Meng L.2006. Isolation and expression pattern of key genes involved in blue flower formation[D]. Thesis for M.D., Beijing Forestry University,Supervisor: Dai S L, pp. 20-22.) [8] 孟丽, 戴思兰 . 2004. F3′5′H 基因与蓝色花的形成[J]. 分子植物育种 , (03): 413-420. (Meng L, Dai S L. 2004. F3′5′H genes regulation and blue flowers formation[J]. Molecular Plant Breeding, (03): 413-420.) [9] 孟丽, 戴思兰 . 2005. 瓜叶菊 F3′5′H 基因 cDNA 的克隆、序列分析及其原核表达[J]. 分子植物育种 , (06): 28-34. (Meng L, Dai S L.2005. Cloning, sequencing and prokaryotic expression of F3′5′H cDNA from Pericallis cruentia (L.) Herit[J]. Molecular Plant Breeding, (06): 28-34.) [10] 王翠丽, 吴丽芳, 王祥宁, 等. 2012. 川乌头 F3′5′H 基因的cDNA 克隆与表达分析[J]. 园艺学报 , 39(07): 1395-1402. (Wang C L, Wu L F, Wang X N, et al. 2012. Cloning and expression pattern analysis of flavonoid-3', 5'- hydroxylase gene from Aconitum carmichaeli[J]. Acta Horticulture Sinica, 39(07): 1395-1402.) [11] 邢梦云 .2021. 杨梅 FLSs 和 F3'5'H 调控杨梅素生物合成的机制研究[D]. 博士学位论文, 浙江大学, 导师: 李鲜, pp. 60-65. (Xing M Y.2021. Regulation of myricetin biosynthesis by FLSs and F3'5'H in Morella rubra[D]. Thesis for PhD., Zhejiang University, Supervisor: Li X. pp. 60-65.) [12] Bak S, Beisson F, Bishop G, et al. 2011. The Arabidopsis Book[M]. American: Society of Plant Biologists, 9: e0144. [13] Bar-Nun S, Kreibich G, Adesnik M, et al. 1980. Synthesis and insertion of cytochrome P450 into endoplasmic reticulum membranes[J]. Proceedings of the National Academy of Sciences of the USA, 77: 965-969. [14] Confortin T C, Todero I, Luft L, et al. 2018. Importance of Lupinus albescens in agricultural and food-related areas: A review[J]. 3 Biotech, 8(10): 448. [15] Durst F, Nelson Dr.1995. Diversity and evolution of plant P450 and P450-reductases[J]. Drug Metabolism and Drug Interactions, 12(3-4): 189-206. [16] Han X Y, Luo Y T, Lin J Y, et al. 2021. Generation of purple-violet chrysanthemums via anthocyanin B-ring hydrox ylation and glucosylation introduced from Osteospermum hybrid F3'5'H and Clitoria ternatea A3'5'GT[J]. Ornamental Plant Research, 1(1): 4. [17] Holton A T.1996. Transgenic plants exhibiting altered flower color and methods for producing same. the United States America, 6080920[P]. 2000-06-27. [18] Holton T A, Brugliera F, Lester D R, et al. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour[J]. Nature, 366(6452): 276-279. [19] Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin[J]. Plant and Cell Physiology, 48(11): 1589-1600. [20] Kitamur A S.2006. Transport of Flavonoids: from Cytosolic Synthesis to Vacuolar Accumulation[M]. New York: Springer, pp. 123-146. [21] Saslowsky D, Winkel S B.2001. Localization of flavonoid enzymes in Arabidopsis roots[J]. The Plant Journal, 27(1): 37-48. [22] Li M, Cao Y, Debnath B, et al. 2021. Cloning and expression analysis of flavonoid 3', 5'-hydroxylase gene from Brun- felsia acuminata[J]. Genes (Basel), 12(7): 1086. [23] Monier S, Van Luch P, Kreiich G, et al. 1988. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane[J]. Journal of Cell Biology, 107: 457-470. [24] Mori S, Kobayashi H, Hoshi Y, et al. 2004. Heterologous expression of the flavonoid 3', 5'-hydroxylase gene of Vin- ca major alters flower color in transgenic Petunia hyb- rida[J]. Plant Cell Reports, 22(6): 415-421. [25] Nielsen K M, Podivinsky E.1997. cDNA cloning and endogenous expression of a flavonoid 3', 5'-hydroxylase from petals of lisianthus (Eustoma grandiflorum)[J]. Plant Science, 129(2): 167-174. [26] Sato M, Kawabe T, Hosokawa M, et al. 2011. Tissue culture- induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3', 5' hydroxylase (F3′5′H) promoter[J]. Plant Cell Reports, 30(5): 929-939. [27] Su V, Hsu B D.2003. Cloning and expression of a putative cytochrome P450 gene that influences the colour of Pha- laenopsis flowers[J]. Biotechnology Letters, 25(22): 1933-1939. [28] Takahashi R, Dubouzet Jg, Matsumura H, et al. 2010. A new allele of flower color gene W1 encoding flavonoid 3'5'-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja[J]. BMC Plant Biology, 10: 155. [29] Tanaka Y, Tsuda S, Kusumi T.1998. Metabolic engineering to modify flower color[J]. Plant and Cell Physiology, 39(11): 1119-1126. [30] Togami J, Tamura M, Ishiguro K, et al. 2006. Molecular characterization of the flavonoid biosynthesis of Verbena hybrida and the functional analysis of verbena and Clitoria ternatea F3′5′H genes in transgenic verbena[J]. Plant Biotechnology, 23(1): 5-11. [31] Toguri T, Umemoto N, Kobayashi O, et al. 1993. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA[J]. Plant Molecular Biology, 23(5): 933-946. [32] Ueyama Y, Katsumoto Y, Fukui Y, et al. 2006. Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp.[J]. Plant Biotechnology, 23(1): 19-24. [33] Van Tunen A, Koes R, Spelt C, et al. 1988. Cloning of the two chalcone flavanone isomerase genes from Petunia hyb- rida: Coordinate, light-regulated and differential expression of flavonoid genes[J]. The EMBO Journal, 7(5): 1257-1263. [34] Wang J, Ming F, Han Y, et al. 2006. Flavonoid-3', 5'-hydroxylase from Phalaenopsis: A novel member of cytochrome P450s, its cDNA cloning, endogenous expression and molecular modeling[J]. Biotechnology Letters, 28(5): 327-334. [35] Whang S, Um W, Song I, et al. 2011. Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3', 5'-hydroxylase (F3′5′H) in Dendrobium moniliforme[J]. Journal of Cell Biology, 54: 209-218.