Genomic Selection and Its Research Progress in Breeding of Aquaculture Species
SONG Hai-Liang, HU Hong-Xia*
Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center (Beijing)/Beijing Key Laboratory of Fisheries Biotechnology, Beijing 100068, China
Abstract:Genomic selection (GS) has developed rapidly since it was proposed in 2001. It has become a research and application hotspot in the field of animal and plant breeding, which has brought revolutionary changes to animal and plant breeding. Genomic selection, which makes up for the deficiency of traditional breeding methods, has attracted more and more attention. Theory and breeding practice show that the accuracy of genomic selection is higher than that of traditional breeding, which can speed up breeding progress and improve breeding efficiency. At present, a large number of genomic selection studies have been carried out for aquaculture species, while comparing with livestock and poultry, genomic selection for aquaculture species is still in its infancy. This article reviews the principles and procedures, preconditions, analysis methods, advantages and influencing factors of genomic selection. Furthermore, the research progress of genomic selection technology in aquaculture species breeding is expounded. The problems and challenges in the application of genomic selection in aquaculture species are discussed, and the development prospects of genomic selection are also prospected, aiming to provide reference for the application of genomic selection in aquaculture species.
宋海亮, 胡红霞. 基因组选择及其在水产动物育种中的研究进展[J]. 农业生物技术学报, 2022, 30(2): 379-392.
SONG Hai-Liang, HU Hong-Xia. Genomic Selection and Its Research Progress in Breeding of Aquaculture Species. 农业生物技术学报, 2022, 30(2): 379-392.
[1] 徐云碧, 杨泉女, 郑洪建, 等. 2020. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 53(15): 2983-3004. (Xu Y B, Yang Q N, Zheng H J, et al.2020. Genotyping by target sequencing (GBTS) and its applications[J]. Scientia Agricultura Sinica, 53(15): 2983-3004) [2] 张顺进, 寇浩玮, 丁晓婷, 等. 2021. 全基因组选择技术在反刍动物遗传育种中的研究进展及其应用[J]. 农业生物技术学报, 29(3): 571-578. (Zhang S J, Kou H W, Ding X T, et al.2021. The research progress and application of genomic-wide selection in ruminant genetics and breeding[J]. Journal of Agricultural Biotechnology, 29(3): 571-578.) [3] 郑先虎, 匡友谊, 吕伟华, 等. 2020. 水产生物基因组研究进展与趋势[J]. 水产学报, 43(1):15-35. (Zheng X H, Kuang Y Y, Lv W H, et al.2020. Progress and perspective of the genome research in aquatic organisms[J]. Journal of Fisheries of China, 43(1):15-35.) [4] Abdelrahman H, ElHady M, Alcivar-Warren A, et al.2017. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research[J]. BMC Genomics, 18: 191. [5] Aslam M L, Carraro R, Bestin A, et al.2018. Genetics of resistance to photobacteriosis in gilthead sea bream (Sparus aurata) using 2b-RAD sequencing[J]. BMC Genetics, 19: 43. [6] Bangera R, Correa K, Lhorente J P, et al.2017. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar)[J]. BMC Genomics, 18: 121. [7] Bangera R, Thorland I, Hillestad B, et al., 2018. Accuracy of genomic predictions for yield traits, flesh colour and fillet fat in Atlantic salmon (Salmo salar)[M]. Proceedings of the World Congress on Genetics Applied to Livestock Production, New Zealand, pp. 627. [8] Baranski M, Gopikrishna G, Robinson N A, et al.2014. The development of a high density linkage map for black tiger shrimp (Penaeus monodon) based on cSNPs[J]. PLOS ONE, 9(1): e85413. [9] Barria A, Christensen K A, Yoshida G M, et al.2018. Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in Coho salmon (Oncorhynchus kisutch) using ddRAD sequencing[J]. G3-Genes Genomes Genetics, 8(4): 1183-1194. [10] Berthelot C, Brunet F, Chalopin D, et al.2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates[J]. Nature Communications, 5: 3657. [11] Boison S A, Gjerde B, Hillestad B, et al.2019. Genomic and transcriptomic analysis of Amoebic gill disease resistance in Atlantic salmon (Salmo salar L.)[J]. Frontiers in Genetics, 10: 68. [12] Chen S L, Zhang G J, Shao C W, et al.2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle[J]. Nature Genetics, 46(3): 253-260. [13] Correa K, Bangera R, Figueroa R, et al.2017. The use of genomic information increases the accuracy of breeding value predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon (Salmo salar)[J]. Genetics Selection Evolution, 49: 15. [14] Daetwyler H D, Pong-Wong R, Villanueva B, et al.2010. The impact of genetic architecture on genome-wide evaluation methods[J]. Genetics, 185(3): 1021-1031. [15] Davey J W, Hohenlohe P A, Etter P D, et al.2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Reviews Genetics, 12(7): 499-510. [16] Dekkers J C.2004. Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons[J]. Journal of Animal Science, 82 E-Suppl: E313-328. [17] Dimitrakopoulos L, Prassas I, Diamandis E P, et al.2017. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction[J]. Critical Reviews in Clinical Laboratory Sciences, 54(6): 414-432. [18] Dong L S, Xiao S J, Wang Q R, et al.2016. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea)[J]. BMC Genomics, 17: 460. [19] Dou J, Li X, Fu Q, et al.2016. Evaluation of the 2b-RAD method for genomic selection in scallop breeding[J]. Scientific Reports, 6: 19244. [20] Du K, Stock M, Kneitz S, et al.2020. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization[J]. Nature Ecology & Evolution, 4(6): 841-852. [21] Dupont-Nivet M, Vandeputte M, Haffray P, et al.2006. Effect of different mating designs on inbreeding, genetic variance and response to selection when applying individual selection in fish breeding programs[J]. Aquaculture, 252(2-4): 161-170. [22] Edwards S M, Sorensen I F, Sarup P, et al.2016. Genomic prediction for quantitative traits is improved by mapping variants to gene ontology categories in Drosophila melanogaster[J]. Genetics, 203(4): 1871-1883. [23] Falconer D S, Mackay T F, Frankham R.1996. Introduction to quantitative genetics (4th edn)[J]. Trends in Genetics, 12(7): 280-289. [24] Fore M, Frank K, Norton T, et al.2018. Precision fish farming: A new framework to improve production in aquaculture[J]. Biosystems Engineering, 173: 176-193. [25] Garcia A L S, Bosworth B, Waldbieser G, et al.2018. Development of genomic predictions for harvest and carcass weight in channel catfish[J]. Genetics Selection Evolution, 50: 66. [26] Gianola D, van Kaam J B C H M.2008. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits[J]. Genetics, 178(4): 2289-2303. [27] Goddard M E, Hayes B J.2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes[J]. Nature Reviews Genetics, 10(6): 381-391. [28] Gong J, Zhao J, Ke Q Z, et al.2021. First genomic prediction and genome-wide association for complex growth-related traits in Rock Bream (Oplegnathus fasciatus)[J]. Evolutionary Applications, 00: 1-14. [29] Gratacap R L, Wargelius A, Edvardsen R B, et al.2019. Potential of genome editing to improve aquaculture breeding and production[J]. Trends in Genetics, 35(9): 672-684. [30] Guo Z G, Magwire M M, Basten C J, et al.2016. Evaluation of the utility of gene expression and metabolic information for genomic prediction in maize[J]. Theoretical and Applied Genetics, 129(12): 2413-2427. [31] Gutierrez A P, Matika O, Bean T P, et al.2018. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): Potential of low-density marker panels for breeding value prediction[J]. Frontiers in Genetics, 9: 391. [32] Gutierrez A P, Symonds J, King N, et al.2020. Potential of genomic selection for improvement of resistance to ostreid herpesvirus in Pacific oyster (Crassostrea gigas)[J]. Animal Genetics, 51(2): 249-257. [33] Gutierrez A P, Turner F, Gharbi K, et al.2017. Development of a medium density combined-species SNP array for Pacific and European oysters (Crassostrea gigas and Ostrea edulis)[J]. G3 (Bethesda), 7(7): 2209-2218. [34] Hedgecock D, Shin G, Gracey A Y, et al.2015. Second-generation linkage maps for the Pacific oyster Crassostrea gigas reveal errors in assembly of genome scaffolds[J]. G3-Genes Genomes Genetics, 5(10): 2007-2019. [35] Horn S S, Meuwissen T H E, Moghadam H, et al.2020. Accuracy of selection for omega-3 fatty acid content in Atlantic salmon fillets[J]. Aquaculture, 519: 734-767. [36] Houston R D, Bean T P, Macqueen D J, et al.2020. Harnessing genomics to fast-track genetic improvement in aquaculture[J]. Nature Reviews Genetics, 21(7): 389-409. [37] Houston R D, Taggart J B, Cezard T, et al.2014. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)[J]. BMC Genomics, 15: 90. [38] Jones D B, Jerry D R, Foret S, et al.2013. Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima[J]. Marine Biotechnology, 15(6): 647-658. [39] Jones D B, Jerry D R, Khatkar M S, et al.2017. A comparative integrated gene-based linkage and locus ordering by linkage disequilibrium map for the Pacific white shrimp, Litopenaeus vannamei[J]. Scientific Reports, 7: 10360. [40] Joshi R, Skaarud A, de Vera M, et al.2020. Genomic prediction for commercial traits using univariate and multivariate approaches in Nile tilapia (Oreochromis niloticus)[J]. Aquaculture, 516: 734641. [41] Joshi R, Arnyasi M, Lien S, et al., 2018. A high density linkage map for Nile tilapia[M]. Proceedings of the World Congress on Genetics Applied to Livestock Production, New Zealand, pp. 813. [42] Kriaridou C, Tsairidou S, Houston R D, et al.2020. Genomic prediction using low density marker panels in aquaculture: Performance across species, traits, and genotyping platforms[J]. Frontiers in Genetics, 11: 124. [43] Li Z C, Gao N, Martini J W R, et al.2019. Integrating gene expression data into genomic prediction[J]. Frontiers in Genetics, 10: 126. [44] Liakos K G, Busato P, Moshou D, et al.2018. Machine learning in agriculture: A review[J]. Sensors, 18(8): 2674. [45] Lien S, Gidskehaug L, Moen T, et al.2011. A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns[J]. BMC Genomics, 12: 615. [46] Liu A, Su G, Hoglund J, et al.2019a. Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins[J]. Journal of Dairy Science, 102(9): 8134-8147. [47] Liu G J, Dong L S, Gu L L, et al.2019b. Evaluation of genomic selection for seven economic traits in Yellow Drum (Nibea albiflora)[J]. Marine Biotechnology, 21(6): 806-812. [48] Liu S, Sun L, Li Y, et al.2014. Development of the catfish 250K SNP array for genome-wide association studies[J]. BMC Res Notes, 7: 135. [49] Liu Y, Lu S, Liu F, et al.2018. Genomic selection using BayesCπ and GBLUP for resistance against Edwardsiella tarda in Japanese Flounder (Paralichthys olivaceus)[J]. Marine Biotechnology, 20(5): 559-565. [50] Lu S, Liu Y, Yu X J, et al.2020. Prediction of genomic breeding values based on pre-selected SNPs using ssGBLUP, WssGBLUP and BayesB for Edwardsiellosis resistance in Japanese flounder[J]. Genetics Selection Evolution, 52(1): 49. [51] Maenhout S, De Baets B, Haesaert G, et al.2007. Support vector machine regression for the prediction of maize hybrid performance[J]. Theoretical and Applied Genetics, 115(7): 1003-1013. [52] Martine V, Naish K, Bravo C, et al.2018. Development of a high-density genomic platform for Coho salmon and its use in population assessment in Chile and North America[M]. Proceedings of the World Congress on Genetics Applied to Livestock Production, New Zealand, pp. 968. [53] Meuwissen T H E, Hayes B J, Goddard M E.2001. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 157(4): 1819-1829. [54] Meyer K.2009. Factor-analytic models for genotype×environment type problems and structured covariance matrices[J]. Genetics Selection Evolution, 41(1): 21. [55] Nguyen N H, Phuthaworn C, Knibb W.2020. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis[J]. Genomics, 112(2): 2021-2027. [56] Nguyen N H, Premachandra H K A, Kilian A, et al.2018a. Genomic prediction using DArT-Seq technology for yellowtail kingfish Seriola lalandi[J]. BMC Genomics, 19: 107. [57] Nguyen N H, Rastas P M A, Premachandra H K A, et al.2018b. First high-density linkage map and single nucleotide polymorphisms significantly associated with traits of economic importance in Yellowtail Kingfish Seriola lalandi[J]. Frontiers in Genetics, 9: 127. [58] Odegard J, Moen T, Santi N, et al.2014. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar)[J]. Front Genet, 5: 402. [59] Ogutu J O, Piepho H P, Schulz-Streeck T.2011. A comparison of random forests, boosting and support vector machines for genomic selection[J]. BMC Proceedings, 5(3): S11. [60] Ogutu J O, Schulz-Streeck T, Piepho H-P.2012. Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions[J]. BMC Proceedings, 6(2): S10. [61] Palaiokostas C, Kocour M, Prchal M, et al.2018a. Accuracy of genomic evaluations of juvenile growth rate in common carp (Cyprinus carpio) using genotyping by sequencing[J]. Frontiers in Genetics, 9: 82. [62] Palaiokostas C, Ferraresso S, Franch R, et al.2016. Genomic prediction of resistance to Pasteurellosis in Gilthead Sea Bream (Sparus aurata) using 2b-RAD sequencing[J]. G3-Genes Genomes Genetics, 6(11): 3693-3700. [63] Palaiokostas C, Vesely T, Kocour M, et al.2019. Optimizing genomic prediction of host resistance to koi herpesvirus disease in carp[J]. Frontiers in Genetics, 10: 543. [64] Palaiokostas C, Cariou S, Bestin A, et al.2018b. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing[J]. Genetics Selection Evolution, 50(1): 30. [65] Palti Y, Gao G, Liu S, et al.2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout[J]. Molecular Ecology Resources, 15(3): 662-672. [66] Penaloza C, Robledo D, Barria A, et al.2020. Development and validation of an open access SNP array for Nile Tilapia (Oreochromis niloticus)[J]. G3-Genes Genomes Genetics, 10(8): 2777-2785. [67] Qi H G, Song K, Li C Y, et al.2017. Construction and evaluation of a high-density SNP array for the Pacific oyster (Crassostrea gigas)[J]. PLOS ONE, 12(3): e0174007. [68] Robertson.1959. The sampling variance of the genetic correlation coefficient[J]. Biometrics, 15: 469-468. [69] Robledo D, Matika O, Hamilton A, et al.2018. Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon[J]. G3 (Bethesda), 8(4): 1195-1203. [70] Saberioon M, Gholizadeh A, Cisar P, et al.2017. Application of machine vision systems in aquaculture with emphasis on fish: State-of-the-art and key issues[J]. Reviews in Aquaculture, 9(4): 369-387. [71] Saura M, Carabano M J, Fernandez A, et al.2019. Disentangling genetic variation for resistance and endurance to Scuticociliatosis in Turbot using pedigree and genomic information[J]. Frontiers in Genetics, 10: 539. [72] Shao C W, Bao B L, Xie Z Y, et al.2017. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry[J]. Nature Genetics, 49(1): 119-124. [73] Silva R M O, Evenhuis J P, Vallejo R L, et al.2019. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations[J]. Genetics Selection Evolution, 51(1): 42. [74] Soller M, Beckmann J S.1983. Genetic polymorphism in varietal identification and genetic improvement[J]. Theoretical and Applied Genetics, 67(1): 25-33. [75] Song H, Hu H.2021. Strategies to improve the accuracy and reduce costs of genomic prediction in aquaculture species[J]. Evolutionary Applications, 00: 1-13. [76] Song H, Ye S, Jiang Y, et al.2019. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs[J]. Genetics Selection Evolution, 51(1): 58. [77] Song H, Zhang J, Jiang Y, et al.2017. Genomic prediction for growth and reproduction traits in pig using an admixed reference population[J]. Journal of Animal Science, 95(8): 3415-3424. [78] Song H L, Zhang Q, Ding X D.2020a. The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs[J]. Journal of Animal Science and Biotechnology, 11(1): 88. [79] Song H L, Zhang Q, Misztal I, et al.2020b. Genomic prediction of growth traits for pigs in the presence of genotype by environment interactions using single-step genomic reaction norm model[J]. Journal of Animal Breeding and Genetics, 137(6): 523-534. [80] Star B, Nederbragt A J, Jentoft S, et al.2011. The genome sequence of Atlantic cod reveals a unique immune system[J]. Nature, 477(7363): 207-210. [81] Su G, Madsen P, Lund M S.2009. Reaction norm model with unknown environmental covariate to analyze heterosis by environment interaction[J]. Journal of Dairy Science, 92(5): 2204-2213. [82] Tsai H Y, Hamilton A, Tinch A E, et al.2015. Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array[J]. BMC Genomics, 16: 969. [83] Tsai H Y, Hamilton A, Tinch A E, et al.2016. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations[J]. Genetics Selection Evolution, 48(1): 47. [84] Vallejo R L, Cheng H, Fragomeni B O, et al.2019. Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population[J]. Genetics Selection Evolution, 51(1): 47. [85] Vallejo R L, Leeds T D, Fragomeni B, et al.2016. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: Insights on genotyping methods and genomic prediction models[J]. Frontiers in Genetics, 7: 96. [86] Vallejo R L, Leeds T D, Gao G T, et al.2017. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture[J]. Genetics Selection Evolution, 49(1): 17. [87] Vallejo R L, Silva R M O, Evenhuis J P, et al.2018. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor[J]. Journal of Animal Breeding and Genetics, 135(4): 263-274. [88] Vazquez A I, Veturi Y, Behring M, et al.2016. Increased proportion of variance explained and prediction accuracy of survival of breast cancer patients with use of whole-genome multiomic profiles[J]. Genetics, 203(3): 1425-1438. [89] Veerkamp R F, Bouwman A C, Schrooten C, et al.2016. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle[J]. Genetics Selection Evolution, 48(1): 95. [90] Wang Q C, Yu Y, Li F H, et al.2017a. Predictive ability of genomic selection models for breeding value estimation on growth traits of Pacific white shrimp Litopenaeus vannamei[J]. Chinese Journal of Oceanology and Limnology, 35(5): 1221-1229. [91] Wang Q C, Yu Y, Yuan J B, et al.2017b. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei[J]. BMC Genetics, 18(1): 45. [92] Wang Q C, Yu Y, Zhang Q, et al.2019. Evaluation on the genomic selection in Litopenaeus vannamei for the resistance against Vibrio parahaemolyticus[J]. Aquaculture, 505: 212-216. [93] Wang Y F, Sun G D, Zeng Q F, et al.2018. Predicting growth traits with genomic selection methods in Zhikong Scallop (Chlamys farreri)[J]. Marine Biotechnology, 20(6): 769-779. [94] Wang Y P, Lu Y, Zhang Y, et al.2015. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation[J]. Nature Genetics, 47(8): 962-962. [95] Wu C W, Zhang D, Kan M Y, et al.2014. The draft genome of the large yellow croaker reveals well-developed innate immunity[J]. Nature Communications, 5: 5227. [96] Xu J, Zhao Z X, Zhang X F, et al.2014a. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio)[J]. BMC Genomics, 15: 307. [97] Xu P, Zhang X F, Wang X M, et al.2014b. Genome sequence and genetic diversity of the common carp, Cyprinus carpio[J]. Nature Genetics, 46(11): 1212-1219. [98] Xu Y, Xu C, Xu S.2017. Prediction and association mapping of agronomic traits in maize using multiple omic data[J]. Heredity, 119(3): 174-184. [99] Yanez J M, Naswa S, Lopez M E, et al.2016. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): Validation in wild and farmed American and European populations[J]. Molecular Ecology Resources, 16(4): 1002-1011. [100] Yoshida G M, Carvalheiro R, Rodriguez F H, et al.2019a. Single-step genomic evaluation improves accuracy of breeding value predictions for resistance to infectious pancreatic necrosis virus in rainbow trout[J]. Genomics, 111(2): 127-132. [101] Yoshida G M, Lhorente J P, Correa K, et al.2019b. Genome-wide association study and cost-efficient genomic predictions for growth and fillet yield in Nile Tilapia (Oreochromis niloticus)[J]. G3-Genes Genomes Genetics, 9(8): 2597-2607. [102] Yoshida G M, Carvalheiro R, Lhorente J P, et al.2018a. Accuracy of genotype imputation and genomic predictions in a two-generation farmed Atlantic salmon population using high-density and low-density SNP panels[J]. Aquaculture, 491: 147-154. [103] Yoshida G M, Bangera R, Carvalheiro R, et al.2018b. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed rainbow trout[J]. G3-Genes Genomes Genetics, 8(2): 719-726. [104] Zeng Q F, Fu Q, Li Y, et al.2017. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence[J]. Scientific Reports, 7: 40347. [105] Zenger K R, Khatkar M S, Jones D B, et al.2019. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to marine shrimp and pearl oysters[J]. Frontiers in Genetics, 9: 693. [106] Zhang W J, Li W B, Liu G J, et al.2021. Evaluation for the effect of low-coverage sequencing on genomic selection in large yellow croaker[J]. Aquaculture, 534: 736323. [107] Zhang Z, Liu J F, Ding X D, et al.2010. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix[J]. PLOS ONE, 5(9): e12648. [108] Zhou Q, Chen Y D, Lu S, et al.2020a. Development of a 50K SNP array for japanese flounder and its application in genomic selection for disease resistance[J]. Engineering, 7(3): 406-411. [109] Zhou T, Chen B, Ke Q, et al.2020b. Development and evaluation of a high-throughput single-nucleotide polymorphism array for large yellow croaker (Larimichthys crocea)[J]. Frontiers in Genetics, 11: 571751.