Research Progress of Chicken (Gallus) Meat- Quality Related Regulatory Genes
ZHAO Wei1, CAO Guo-Wei2, ZHOU Zi-Hang1, WANG Wei-Zhen1, XIN Guo-Sheng3, CAI Zheng-Yun1, GU Ya-Ling1, ZHANG Juan1,*
1 College of Agriculture, Ningxia University, Ningxia 750021, China; 2 Pengyang County Livestock Technology Extension Service Center, Guyuan 756000, China; 3 College of Life Sciences, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan 750021, China
Abstract:In recent years, with consumers' pursuit of chicken (Gallus) meat quality, breeders have done more and more research on chicken meat quality traits. Inosine monophosphate (IMP) and intramuscular fat (IMF) are significant flavor substances affecting chicken flavor. In depth study of their mechanism is of great significance to improve chicken quality. In this paper, the candidate genes in the synthetic metabolism pathway of IMP and IMF were analyzed in order to explore their mechanism and function, improve selection efficiency, improve chicken quality, and provide reference basis for the genetic improvement of chicken meat quality traits.
[1] CY.2021. 口味广谱供需利好鸡肉有望成为肉届超级品类[J]. 中国食品, (05): 82-83. (CY. 2021. Taste broad-spectrum good supply and demand for chicken meat is expected to become a super category[J]. Food of China, (05): 82-83.) [2] 曹少奇, 张梅, 张苗苗, 等. 2019. 巨型玫瑰冠鸡ADSL基因表达及其与IMP的相关分析[J]. 中国家禽. 41(06): 46-48. (Cao S Q, Zhang M, Zhang M M, et al.2019. Expression of ADSL gene and its correlation with IMP in giant rose-crowned chicken[J]. China Poultry, 41(06):46-48.) [3] 柴丽娟, 储明星, 文杰, 等. 2005. 6个鸡种AMPD1基因PCR-RF-SSCP分析[J]. 安徽农业大学学报 , (04): 47-51. (Chai L J, Chu M X, Wen J, et al. 2005. PCR-RF-SSCP analysis of AMPD1 gene in 6 chicken breeds [J]. Journal of Anhui Agricultural University, (04): 47-51.) [4] 陈继兰, 赵桂苹, 郑麦青, 等. 2002. 快速与慢速肉鸡脂肪生长与肌苷酸含量比较[J]. 中国家禽, (08): 18-20. (Chen J L, Zhao G P, Zheng M Q, et al. 2002. Comparison of fat growth and inosinic acid content in fast and slow broilers [J]. China Poultry, (08): 18-20.) [5] 陈兴勇, 郭立平, 张成, 等. 2020. 过氧化物酶体增殖物激活受体γ参与鸡脂质代谢调控的机理[J].中国家禽, 42(07) :1-5. (Chen X Y, Guo L P, Zhang C, et al.2020. The role of peroxisome proliferator-activated receptor γ in the regulation of lipid metabolism in chicken[J]. China Poultry, 42(07): 1-5.) [6] 崔婷婷, 邢天宇, 褚衍凯, 等. 2017. PPARγ在脂肪生成中的遗传和表观遗传调控[J]. 遗传, 39(11): 1066-1077. (Cui T T, Xian T Y, Chu Y K, et al.2017. The role of PPARγ in the regulation of adipogenesis[J]. Genetics, 39(11): 1066-1077.) [7] 邓龙华, 谢亮, 罗成龙, 等. 2010. 鸡心脏型脂肪酸结合蛋白(H-FABP)基因多态性对肉质性状和组织表达的影响[J]. 农业生物技术学报, 18(03): 545-555. (Deng L H, Xie L, Luo C L, et al.2010. Effects of heart type fatty acid binding protein (H-FABP) gene polymorphism on meat quality and tissue expression[J]. Journal of Agricultural Biotechnology, 18(03): 545-555) [8] 豆腾飞, 汪善荣, 佟荟全, 等. 2017. 武定鸡和大围山微型鸡肌苷酸含量及ADSL基因表达差异研究[J]. 中国家禽, 39(14): 7-10. (Dou T F, Wang S R, Tong H Q, et al.2017. Difference of inosinic acid content and ADSL gene expression in Wudingchickens and Daweishan miniature chickens[J]. China Poultry, 39(14):7-10.) [9] 段炼. 2016. PPARα和PPARγ基因对金茅花鸡生长、屠宰、肉质性状的遗传效应及表达规律研究[D]. 硕士学位论文, 扬州大学, 导师: 王金玉, pp: 44-49. (Duan L.2016. Studies on the genetic effects and expression rules of PPARα and PPARγ genes on growth, slaughter and meat quality traits of Jinmaohua chickens [D]. Thesis for M.S., Yangzhou University, Supervisor: Wang J Y. pp: 44-49.) [10] 顾亚玲, 张娟, 朱生琴, 等. 2011. 固原鸡不同群体AMPD1基因遗传特性的研究[J]. 农业科学研究, 32(01): 58-61+82.(Gu Y L, Zhang J, Zhu S Q, et al. 2011. Tudy on genetic characteristics of AMPD1 gene in Guyuan chicken population [J]. Research in Agricultural Sciences, 32(01): 58-61+82.) [11] 郭丽君. 2012. 抗菌肽制剂对芦花鸡肉质品质及胸肌H-FABP基因表达的影响[D]. 硕士学位论文, 吉林大学, 导师: 张晶, pp: 18-19. (Guo L J.2012. Effect of antimicrobial peptide preparation on meat quality and breast muscle H-FABP gene expression of Luhua chicken [D]. Thesis for M.S., Jilin University, Supervisor: Zhang J, pp: 18-19.) [12] 郭振清, 李红强, 孙健. 2020. 长白猪PPARα、PPARγ基因的克隆、表达及生物信息学分析[J/OL].中国畜牧志, 56(12):181-186+190. (Guo Z Q, Li H Q, Sun J. 2020. Cloning, expression and bioinformatics analys of PPARα and PPARγ genes in landcine [J/OL]. China animal husbandry, 56(12):181-186+190.) [13] 黄涛, 刘华贵, 徐淑芳, 等. 2005. 相同营养条件下五种鸡肉肌苷酸及其相关代谢物含量的比较研究[J]. 饲料工业, (10): 45-47. (Huang T, Liu H G, Xu S F, et al. 2005. Comparative study on the contents of inosinic acid and its related metabolites in chicken under the same nutritional conditions[J]. Feed Industry, (10): 45-47.) [14] 李石友, 徐英, 李琦华, 等. 2007. 品种与日粮营养水平对鸡肉肌苷酸含量的影响[J]. 中国畜牧兽医, (10): 133-135. (Li S Y, Xu Y, Li Q H, et al. 2007. Effects of dietary nutrition levels on inosinic acid content in chicken [J]. China Animal Husbandry and Veterinary Medicine, (10): 133-135.) [15] 李雪, 高梦锦, 李京京, 等. 2020. 影响鸡肉品质候选基因的研究进展[J]. 中国家禽, 42(05): 79-84. (Li X, Gao M J, Li J J, et al.2020. Research progress on candidate genes affecting chicken quality[J]. China Poultry, 42(05): 79-84.) [16] 梁彩梅, 邓继贤, 黎剑能, 等. 2017. 广西南丹瑶鸡PGC-1α基因的克隆与生物信息学分析[J]. 基因组学与应用生物学, 36(12): 5113-5115. (Liang C M, Deng J X, Li J N, et al.2017. Cloning and bioinformatics analysis of PGC-1α gene from Nandanyao chicken in Guangxi[J]. Genomics and Applied Biology, 36(12): 5113-5115.) [17] 廖望. 2019. 淮南麻黄鸡屠宰性能和肌肉品质及其相关基因表达研究[D]. 硕士学位论文, 安徽农业大学, 导师: 耿照玉, pp: 1-6. (Liao W.2019. Study on slaughter performance, muscle quality and related gene expression of Huainan ephedra chicken [D]. Thesis for M.S., Anhui Agricultural University, Supervisor: Geng Z Y, pp:1-6.) [18] 刘宏祥, 束婧婷, 李慧芳, 等. 2011. 清远麻鸡PGC-1α基因多态性与肉质性状的相关性分析[J]. 中国农学通报, 27(07): 314-321. (Liu H X, Shu J T, Li H F, et al.2011. Correlation analysis of PGC-1α gene polymorphism and meat quality traits in Qingyuan chicken[J]. Chinese Agricultural Science Bulletin, 27(07): 314-321.) [19] 刘耀文, 匡佑华, 曲湘勇, 等. 2020. 地方肉鸡肌苷酸形成机制及相关候选基因研究进展[J]. 经济动物学报, 24(04): 229-233+241.(Liu Y W, Kuang Y H, Qu X Y, et al. 2020. Advances in inosinic acid formation mechanism and related candidate genes in local broilers [J]. Acta Ecologica Sinica, 24(04): 229-233+241.) [20] 罗桂芬, 陈继兰, 孙世铎, 等. 2005.鸡AMPD1基因PCR-SSCP分析与相关性状的研究[J]. 黑龙江畜牧兽医, (04):8-10. (Luo G F, Chen J L, Sun S D, et al. 2005. Study on PCR-SSCP analysis of chicken AMPD1 gene and related traits[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, (04): 8-10.) [21] 马倩玉. 2019. SPS措施对中国鸡肉出口贸易的影响[J]. 安徽农业大学学报(社会科学版), 28(05): 64-69. (Ma Q Y.2019. Influence of SPS measures on China's chicken export trade[J]. Journal of Anhui Agricultural University (Social Science Edition), 28(05):64-69.) [22] 欧秀琼, 李睿, 张晓春, 等. 2021. 猪肌纤维性状形成和肌内脂肪沉积的遗传机制[J]. 中国畜牧兽医, 48(03): 925-931. (Ou X Q, Li R, Zhang X C, et al.2021. The genetic mechanism of muscle fiber character formation and intramuscular fat deposition in pig[J]. China Animal Husbandry and Veterinary Medicine, 48(03): 925-931.) [23] 单体中, 汪以真, 李民. 2006. 猪脂蛋白脂酶基因片段的克隆及不同体重的表达差异[J]. 农业生物技术学报, 14(2): 151-155. (Shan T Z, Wang Y Z, Li M.2006. Cloning and expression difference of porcine lipoprotein lipase gene fragment with different body weight[J]. Journal of Agricultural Biotechnology, 14(2): 151-155.) [24] 单艳菊, 束婧婷, 章明, 等. 2016. PGC-1α基因在两个品种鸡两种表型肌肉中的差异表达[J]. 农业生物技术学报, 24(12): 1900-1907. (Shan Y J, Shu J T, Zhang M, et al.2016. Differential expression of PGC-1α gene in two chicken muscle phenotypes[J]. Journal of Agricultural Biotechnology, 24(12):1900-1907. [25] 邵勇钢, 李凤鸣, 王旭光, 等. 2016. A-FABP基因表达与拜城油鸡公鸡肌内脂肪的相关性研究[J].安徽农业科学, 44(34):147-149. (Shao Y G, Li F M, Wang X G, et al.2016. Study on the Correlation between the expression of A-FABP Gene and intramuscular fat in male baicheng fatty chicken[J]. Anhui Agricultural Science, 44(34): 147-149.) [26] 石浩, 徐亚欧, 梅寒, 等. 2015. 米易鸡ADSL基因第2和第9外显子多态性与肌苷酸含量的关联[J].江苏农业科学, 43(05): 29-32. (Shi H, Xu Y O, Mei H, et al.2015. Relationship between polymorphism of exon 2 and exon 9 of ADSL gene and inosinic acid content in Miyi chicken[J]. Jiangsu Agricultural Sciences, 43(05): 29-32.) [27] 束婧婷, 李慧芳, 张学余, 等. 2009. PURH基因对鸡肉肌苷酸含量的遗传效应及其表达[J]. 农业生物技术学报, 17(05): 779-785. (Shu J T, Li H F, Zhang X Y, et al.2009. Genetic effect and expression of PURH gene on inosinic acid content in chicken[J]. Journal of Agricultural Biotechnology, 17(05): 779-785.) [28] 王晶. 2013. 广西三黄鸡肉质性状分析及LPL、H-FABP基因表达与肌内脂肪含量的相关研究[D].硕士学位论文, 广西大学, 导师: 郭亚芬, pp: 33-58. (Wang J.2013. Analysis of meat quality traits and the correlation between LPL, H-FABP gene expression and intramuscular fat content of Guangxi Sanhuang chicken [D]. Thesis for M.S., Guangxi University, Supervisor: Guo Y F, pp: 33-58.) [29] 王晓方, 常文环, 刘国华, 等. 2012. 畜禽肌肉肌苷酸研究进展[J]. 中国畜牧兽医, 39(05):221-225. (Wang X F, Chang W H, Liu G H, et al.2012. Research progress of inosinic acid in animal muscle[J]. China Animal Husbandry and Veterinary Medicine, 39(05): 221-225.) [30] 文杰. 2012.我国肉鸡业生产现状及未来发展[J].中国家禽, 34(15):1-4. (Wen J.2012. Current situation and future development of broiler production in China[J]. China Poultry, 34(15): 1-4.) [31] 温彦涛. 2013.优质型肉鸡品系(S3系)MSTN、PPAR和LPL基因多态性与屠宰及肉质性状相关性研究[D]. 硕士学位论文, 扬州大学, 导师: 王杏龙, pp: 9-11. (Wen Y T.2013. Study on the correlation between MSTN, PPAR and LPL gene polymorphisms and slaughtering and meat quality traits of high-quality broiler strain (S3) [D]. Thesis for M.S., Yangzhou University, Supervisor: Wang X L, pp:9-11.) [32] 徐凯, 王效京, 刘宏, 等. 2014. 过氧化物酶体增殖物激活受体α在猪肝脏组织中发育性表达研究[J]. 中国畜牧兽医, 41(10): 178-182. (Xu K, Wang X J, Liu H, et al.2014. Expression of peroxisome proliferator-activated receptor α in porcine liver tissue[J]. China Animal Husbandry and Veterinary Medicine, 41(10): 178-182.) [33] 徐善金, 虞德兵, 汪峰, 等. 2012. 鸭腺苷琥珀酸裂解酶基因序列特征及表达与肌肉肌苷酸含量的相关性分析[J]. 中国农业科学, 45(04):774-785. (Xu S J, YU D B, Wang F, et al.2012. Analysis of sequence characters of ADSL gene and correlation between gene expression and IMP content in duck[J]. 45(04):774-785.) [34] 闫俊书, 刘培峰, 施振旦. 2017. 家禽肌肉肌苷酸含量影响因素及其相关基因的研究进展[J]. 中国家禽, 39(10):41-45. (Yan J S, Liu P F, Shi Z D.2017. Research progress on the influence factors of muscle inosinic acid content and related genes in poultry[J]. China Poultry, 39(10) : 41-45.) [35] 闫世雄, 赵净颖, 王秋婷, 等. 2019. 武定鸡和大围山微型鸡肌苷酸含量与PURH基因表达差异研究[J]. 中国家禽, 41(12): 47-50. (Yan S X, Zhao J Y, Wang Q T, et al.2019. Difference of inosinic acid content and PURH gene expression in Wudingchickens and Daweishan miniature chickens[J]. China Poultry, 41(12): 47-50.) [36] 于平. 2012. 鸡AMPD1基因多态性与肌苷酸含量的相关性分析[D]. 硕士学位论文, 南京农业大学. 导师: 徐银学. pp: 8-56. (Yu Ping.2012. Correlation analysis between AMPD1 gene polymorphism and inosinic acid content in chicken [D]. Thesis for M.S., Nanjing Agricultural University. Supervisor: Xu Y X, pp: 8-56.) [37] 喻世刚, 孙学良, 王钢, 等. 2020. ADSL基因启动子区遗传变异与鸡肉冻藏新鲜度的相关性分析[J].中国畜牧兽医, 47(11): 3536-3545. (Yu S G, Sun X L, Wang G, et al.2020. Analysis of the correlation between genetic variation of ADSL gene promoter region and frozen storage freshness of chicken[J]. China Animal Husbandry and Veterinary Medicine, 47(11): 3536-3545.) [38] 扎西次旦, 张大文, 次仁德吉. 2019. 鸡藏肌肉中肌苷酸含量潜在影响基因概述[J]. 西藏农业科技, 41(03): 34-36. (Zha X C D, Zhang D W, Ci R D J.2019. Inosinic acid content in muscle of Tibetan chicken[J]. Journal of Tibetan Agricultural Science and Technology, , 41(03): 34-36.) [39] 张娟, 虎红红, 邓占钊, 等. 2021. 静原鸡AK1基因序列分析及真核表达载体的构建[J]. 华南农业大学学报, 42(02):17-25. (Zhang J, Hu H H, Deng Z Z, et al.2021. Sequence analysis of AK1 gene from Jingyuan chicken and construction of its eukaryotic expression vector[J]. Journal of South China Agricultural University, 42(02):17-25.) [40] 张青青, 许厚强, 陈伟, 等. 2017. 贵州地方黄牛不同组织中PPARγ基因表达水平研究[J]. 中国畜牧兽医, 44(1): 38-43. (Zhang Q Q, Xu H Q, Chen W, et al.2017. Study on the expression level of PPARγ gene in different tissues of cattle[J]. Journal of Animal Husbandry and Veterinary Medicine, 44(1): 38-43.) [41] 张学余, 束婧婷, 苏一军, 等. 2012. 肌苷酸合成酶系PURH基因对苏禽乌骨鸡胸肌肌苷酸含量的关联分析[J]. 江西农业大学学报, 34(03): 562-566. (Zhang X Y, Shu J T, Su Y J, et al.2012. Correlation analysis of PURH gene for inosinic acid content in breast muscle of Sujiujieji chicken[J]. Journal of Jiangxi Agricultural University, 34(03): 562-566.) [42] 朱荣生, 王怀中, 刘俊珍, 等. 2020. PurH基因在大蒲莲猪及其杂交后代肌肉中表达及其与肌苷酸含量关联分析[J]. 家畜生态学报, 41(04): 22-27. (Zhu R S, Wang H Z, Liu J Z, et al.2020. Expression of PurH gene and its association with inosinic acid content in muscle of big pulan pigs and their hybrid progeny[J]. Chinese Journal of Animal Ecology, 41(04): 22-27.) [43] 祝仁铸, 尹逊河, 王元虎, 等. 2013. 猪肌肉组织MDH和LPL基因表达与肌内脂肪含量和脂肪酸组成关系的研究[J]. 畜牧兽医学报, 44(08): 1182-1188. (Zhu R Z, Yin X H, Wang Y H, et al.2013. Study on the relationship between MDH and LPL gene expression and intramuscular fat content and fatty acid composition in pig muscle[J]. Acta Veterinaria et Zootechnica Sinica, 44(08): 1182-1188.) [44] Akira T, Komatsu M, Nango R, et al.1997. Molecular cloning and expression of a rat cDNA encoding 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase[J]. Gene, 197(1-2): 289-293. [45] Cwinn M A, Jones S P, Kennedy S W2008. Exposure to perfluorooctane sulfonate or fenofibrate causes PPAR-α dependent transcriptional responses in chicken embryo hepatocytes[J]. Comparative Biochemistry and Physiology, Part C, 148(2): 165-171. [46] Ding N, Gao Y, Wang N, et al.2011. Functional analysis of the chicken PPARγ gene 5′-flanking region and C/EBPα-mediated gene regulation[J]. Comparative biochemistry and physiology part B, 158(4): 297-303. [47] Gerbens F, Verburg F J, Moerkerk H T V, et al.2001. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs[J]. Journal of animal science, 79(2): 347-354. [48] Huang Z G, Xiong L, Liu Z S, et al.2006. The developmental changes and effect on IMF content of H-FABP and PPAR gamma mRNA expression in sheep muscle[J]. Actagenetica sinica, 33(6): 507-514. [49] Huang Z W, Zhang J, Gu Y L, et al.2020. Research progress on inosine monophosphate deposition mechanism in chicken muscle.[J]. Critical reviews in food science and nutrition. DOI: 10.1080/10408398.2020.1833832 [50] Ijiri D, Yukio K, Miho H.2009. Possible roles of myostatin and PGC-1alpha in the increase of skeletal muscle and transformation of fiber type in cold-exposed chicks: Expression of myostatin and PGC-1alpha in chicks exposed to cold[J]. Domestic animal endocrinology, 37(1): 12-22. [51] Kubota S, Vandee A, Keawnakient P, et al.2019. Effects of the MC4R, CAPN1, and ADSL genes on body weight and purine content in slow-growing chickens[J]. Poultry Science, 98(10): 4327-4337. [52] Li X, Fu X, Yang G, et al.2020. Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals[J]. Animal, 14(2): 312-321. [53] Li X, Xue Y, Pang L, et al.2018. Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk[J]. International journal of biological macromolecules, 125: 820-828. [54] Lv N, Yuan J, Ji Aet al.2019. Perfluorooctanoic acid-induced toxicities in chicken embryo primary cardiomyocytes: Roles of PPAR alpha and Wnt5a/Frizzled2[J]. Toxicology and Applied Pharmacology, 381: 114716. [55] Mangghelsdorf D J, Thummei C, Beato M, et al.1995. The nuclear receptor superfamily: The second decade[J]. Cell, 83(6): 835-839. [56] Ni L Y, Guan L, Zalkin H, et al.1991. De novo purine nucleotide biosynthesis: Cloning, sequencing and expression of a chicken PurH cDNA encoding 5-aminoimidazole-4- carboxamide-ribonucleo tidetransformylase-IMP cyclohyd-rolase[J]. Gene, 106(2): 197-205. [57] Rayl E A, Moroson B A, Beardsler G P.1996. The human purH gene product, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping.[J]. The Journal of biological chemistry, 271(4): 2225-2233. [58] Shu J T, Bao W B, Zhang X Y, et al.2008. Association and haplotype analysis of purh gene with inosine monophosphate content in chickens[J]. Animal Biotechnology, 19(4): 310-314. [59] Shu J T, Bao W B, Zhang X Y, et al.2009. Combined effect of mutations in ADSL and GARS-AIRS-GART genes on IMP content in chickens[J]. British Poultry Science, 50(6): 680-686. [60] Shu J T, Xu W J, Zhang M, et al.2014. Transcriptional co-activator PGC-1α gene is associated with chicken skeletal muscle fiber types[J]. Genetics and Molecular Research, 13(1) :895-905. [61] Wang X F, Liu G H, Cai H Y, et al.2014. Attempts to increase inosinic acid in broiler meat by using feed additives[J]. Poultry science, 93(11): 2802-2808. [62] Wu G Q, Deng X M, Li Y J.2006. A potential molecular marker for selection against abdominal fatness in chickens[J]. PoulytrcSienee, (85): 1896-1899. [63] Xing S Y, Liu R R, Zhao G P, et al.2020. RNA-Seq analysis reveals hub genes involved in chicken intramuscular fat and abdominal fat deposition during development[J]. Frontiers in Genetics, 11: 1009. [64] Ye M H, Chen J L, Zhao G P, et al.2010. Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken[J]. Animal Biotechnology, 21(1): 14-24. [65] Zhang T, Lu H Z, Wang L, et al.2018. Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions[J]. PLOS ONE, 13(8): e0201736. [66] Zhang X D, Li Q H, Lou L F, et al.2015. High-resolution melting curve analysis of the ADSL and LPL genes and their correlation with meat quality and blood parameters in chickens[J]. Genetics and Molecular Research, 14(1): 2031-2040.