Screening of qPCR Internal Reference Genes in Stem Tissue of Pinus massoniana Under Hormone Treatment
QIN Hui-Juan1,2, FAN Fu-Hua1,2,*, ZHOU Zi-Jing1,2
1 Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China; 2 College of Forestry, Guizhou University, Guiyang 550025, China
Abstract:The utilization value of Pinus massoniana is extremely high, exogenous hormones can promote the secondary growth of its stem and wood formation, and rapidly increase its growth speed. Screening the best internal reference genes for qPCR experiment of P. massoniana stem under hormone treatment can provide technical support for gene expression research of secondary growth of P. massoniana. In this study, 14 candidate internal reference genes were selected from the stem transcriptome database of P. massoniana and gene expression was analyzed by qPCR. The expression stability under different hormone treatment - auxin (IAA), gibberellin (GA3), and brassinolide (BR) was analyzed by 3 softwares: GeNorm, NormFinder and BestKeeper. The selected internal reference genes were verified by the target gene cellulose synthase 2 (CESA2). The results showed that, under different hormone treatments, the internal reference genes with the best expression stability were phosphoate cytidine transferase 1 (PCYT1), ubiquitin-conjugating enzyme E2D(UBE2D), and phosphoglucomutase (PGM). The expression pattern of target gene CESA2 under hormone treatment confirmed the reliability of the above internal reference gene combination. The internal reference genes screened in this study would be helpful to improve the accuracy and reliability of qPCR experiment in P. massoniana, which provides a solid foundation for the analysis of differential gene expression of P. massoniana under hormone treatment.
[1] 安宁, 郭文福, 丁贵杰, 等. 2020. 马尾松格木幼林混交效果研究[J]. 中南林业科技大学学报, 40(05): 1-6. (An Ning, Guo W F, Ding G J, et al.2020. Study on mixed young plantation effect of Pinus massoniana and Erythrophleum fordii[J]. Journal of Central South University of Forestry & Technology, 40(05): 1-6.) [2] 储文渊, 王玉娇, 朱东悦, 等. 2017. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 53(10): 70-79. (Chu W Y, Wang Y J, Zhu D Y, et al.2017. Selection of novel reference genes in poplar under salt and drought stresses[J]. Scientia Silvae Sinicae, 53(10): 70-79.) [3] 耿存娟, 夏永刚, 孙凯, 等. 2021. 无人机喷撒白僵菌防治越冬代马尾松毛虫效果研究[J]. 湖南林业科技, 48(03): 69-72. (Geng C J, Xia Y G, Sun Kai, et al.2021. Study on preventive controlling Dendrolimus punctatus by unmanned aerial vehicle spraying Beauveria bassiana[J]. Hunan Forestry Science & Technology, 48(03): 69-72.) [4] 郭晓娟, 陈凌娜, 杨汉奇. 2018. 巨龙竹秆形发育过程实时荧光定量PCR内参基因的筛选[J]. 林业科学研究, 31(02): 120-125. (Guo X J, Chen L N, Yang H Q.2018. Reference gene selection for quantitative real-time PCR in studying culm shape development of Dendrocalamus sinicus[J]. Forest Research, 31(02): 120-125.) [5] 李铁铮, 王金铃, 刘晓, 等. 2021. 管花肉苁蓉实时荧光定量PCR分析中内参基因的选择和验证[J]. 植物生理学报, 57(04): 969-981. (Li T Z, Wang J L, Liu X, et al.2021. Selection and validation of appropriate reference genes for qRT-PCR analysis in Cistanche tubulosa[J]. Plant Physiology Journal, 57(04): 969-981.) [6] 李雪, 潘学军, 张文娥, 等. 2017. 核桃内参基因实时荧光定量PCR表达稳定性评价[J]. 植物生理学报, 53(09): 1795-1802. (Li X, Pan X J, Zhang W E, et al.2017. Stability evaluation of reference genes for quantitative real-time PCR analysis in walnut (Juglans spp.)[J]. Plant Physiology Journal, 53(09): 1795-1802.) [7] 刘昌勇. 2016. 日本落叶松生长及材性相关基因关联遗传研究[D]. 博士学位论文, 中国林业科学研究院, 导师: 张守攻, pp. 1-140. (Liu C Y.2016. Association studies of growth and wood quality relategenes in Larix kaempferi[D]. Thesis for Ph.D., Chinese Academy of Forestry, Supervisor: Zhang S G, pp. 1-140.) [8] 刘文哲, 牛明月, 李秀云, 等. 2016. 光皮桦实时荧光定量PCR内参基因的筛选[J]. 林业科学, 52(08): 29-37. (Liu W Z, Niu M Y, Li X Y, et al.2016. The selection of reference genes for quantitative PCR in Betula luminifera[J]. Scientia Silvae SinicaeI, 52(08): 29-37.) [9] 魏秀清, 章希娟, 许玲, 等. 2018. 莲雾实时荧光定量PCR内参基因的筛选和验证[J]. 果树学报, 35(04): 402-411. (Wei X Q, Zhang X J, Xu L, et al.2018. Screening and validation of reference genes for real-time fluorescence quantitative PCR in wax apple[J]. Journal of Fruit Science, 35(04): 402-411.) [10] 于晓松, 王晓红, 李雪, 等. 2021. 钩藤实时荧光定量PCR分析中内参基因的筛选及稳定性评价[J]. 农业生物技术学报, 29(3): 599-609. (Yu X S, Wang X H, Li X, et al.2021. Screening and stability evaluation of reference genes in Uncaria rhynchophylla qRT-PCR analysis[J]. Chinese Journal of Agricultural Biotechnology, 29(3): 599-609.) [11] 张颖, 陈婉婷, 陈冉红, 等. 2019. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 32(02): 65-72. (Zhang Y, Chen W T, Chen R H, et al.2019. Quantitative real-time PCR analysis of Cunninghamia lanceolata in the selection of the reference genes[J]. Forest Research, 32(02): 65-72.) [12] 张玉芳, 赵丽娟, 曾幼玲. 2014. 基因表达研究中内参基因的选择与应用[J]. 植物生理学报, 50(8): 1119-1125. (Zhang Y F, Zhao L J, Zeng Y L.2014. Selection and application of reference genes for gene expression studies[J]. Plant Physiology Journal, 50(8): 1119-1125.) [13] 周成城, 荣俊冬, 谢德金, 等. 2021. 福建柏实时荧光定量PCR内参基因的选择[J]. 林业科学研究, 34(01): 137-145. (Zhou C C, Rong J D, Xie D J, et al.2021. Quantitative real-time PCR analysis of Fokienia hodginsii during selection of reference genes[J]. Forest Research, 34(01): 137-145.) [14] Bustin S A, Nolan T.2004. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction[J]. Journal of Biomolecular Techniques, 15(3): 155-166. [15] Chen H, Yang Z Q, Hu Y, et al.2016. Reference genes selection for quantitative gene expression studies in Pinus massoniana L.[J]. Trees, 30(3): 685-696. [16] Liu J, Wang Q, Sun M Y, et al.2014. Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs[J]. PLOS ONE, 9(11): e112177. [17] Milhinhos A, Miguel C M.2013. Hormone interactions in xylem development: A matter of signals[J]. Plant Cell Reports, 32(6): 867-883. [18] Mo J X, Xu J, Jin W J, et al.2019. Identification of reference genes for quantitative gene expression studies in Pinus massoniana and its introgression hybrid[J]. Forests, 10(9): 787. [19] Saddhe A A, Malvankar M R, Kumar K.2018. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata[J]. PeerJ, 6: e5226. [20] Singh B, Cheek H D, Haigler C H.2009. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber[J]. Plant Cell Reports, 28(7): 1023-1032. [21] Vanguilder H D, Vrana K E, Freeman W M.2008. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 44(5): 619-626. [22] Zhao C S, Craig J C, Petzold H E, et al.2005. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl[J]. Plant Physiology, 138(2): 803-818. [23] Zhang Y T, Zhu L J, Xue J Y, et al.2021. Selection and verification of appropriate reference genes for expression normalization in Cryptomeria fortunei under abiotic stress and hormone treatments[J]. Genes, 12(6): 791.