Bioinformatics and Expression Analysis of StERF109 Gene in Potato (Solanum tuberosum)
WANG Fang-Fang1, YANG Jiang-Wei1,2, ZHU Xi3, LI Shi-Gui3, LIU Wei-Gang3, ZHANG Ning1,*, SI Huai-Jun1,2
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China; 3 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
Abstract:Ethylene responsive factors (ERFs) belong to the AP2/ERF (APETALA2/ethylene responsive factor) superfamily, which are one of the largest transcription factor families in plants. Previous studies have shown that ERFs are involved in a variety of biological processes in plants, such as growth and development, signal transduction, biotic, abiotic stresses and so on. In this study, in order to study the function of potato (Solanum tuberosum) StERF109 gene (GenBank No. XM_006355301.2), bioinformatics methods were used to analyze the StERF109 protein, and the subcellular localization fusion expression vector StERF109-EGFP was constructed to locate the StERF109 gene. The tissue-specific expression of StERF109 was analyzed using qPCR technology. The results showed that StERF109 contained a typical AP2 domain, which was a hydrophilic protein without transmembrane structure. StERF109 was located on the nucleus and cell membrane. StERF109 gene had the highest expression level in potato roots, but there were differences in the expression level in potato stems and leaves of different potato varieties. StERF109 gene was up-regulated under drought and salt stress, which indicated that StERF109 gene might played an important role in drought and salt stress. The results of the study provide a reference for further research on the function of potato StERF109 gene.
[1] 曹清河, 李雪华, 戴习彬, 等. 2016. PEG-6000模拟干旱胁迫对甘薯近缘野生种Ipomoea trifida (Kunth) G. Don幼苗生理生化指标的影响[J]. 西南农业学报, 29(11): 2536-2541. (Cao Q H, Li X H, Dai X B, et al. 2016. PEG-6000 simulated drought stress to sweetpotatowild relative Ipomoea trifida, 29(11): 2536-2541.) [2] 杜培兵, 杨文静. 2018. 马铃薯抗旱品种筛选及鉴定试验[J].中国蔬菜, 18(09): 29-34. (Du P B, Yang W J. 2018. Drought-resistant potato varieties screening and identification test[J]. China Vegetables, 18(09): 29-34.) [3] 高春艳, 吴芮, 袁玉, 等. 2017. 植物AP2/ERF转录因子及其在非生物胁迫应答中的作用[J]. 江汉大学学报: 自然科学版, 45(3): 236-240. (Gao C Y, Wu R, Yuan Y, et al. 2017. AP2/ERF transcription factors in plants and their roles in abiotic stress response[J]. Journal of Jianghan University (Natural Science), 45(3): 236-240.) [4] 付学, 唐勋, 刘维刚, 等. 2020. 马铃薯StUBC12基因的生物信息学及表达特性分析[J].农业生物技术学报, 28(05):784-793. (Fu X, Tang X, Liu W G, et al. 2020. Bioinformatics and expression characteristics analysis of potato StUBC12 gene[J]. Journal of Agricultural Biotechnology, 28(05): 784-793.) [5] 唐勋, 武亮亮, 司怀军, 等. 2016. 马铃薯干旱胁迫下内参基因筛选及miR166功能研究[C]. 全国农业生物化学与分子生物学第十五届学术研讨会会议文集. 中国生物化学与分子生物学会农业分会, 2016: 5. (Tang X, Wu L L, Si H J, et al., 2016. Potato reference gene screening and miR166 function under drought stress[C]. Proceedings of the 15th National Agricultural Biochemistry and Molecular Biology Symposium. Chinese Biochemistry and Agricultural Branch of the Society of Molecular Biology, 2016: 5.) [6] 张凤军, 阮建平, 王燕钧, 等. 2015. 干旱调控下马铃薯抗旱相关性状的遗传变异分析[J]. 种子, 34(3): 20-22. (Zhang F J, Ruan J P, Wang Y J, et al. 2015. Genetic analysis of drought-resistance traits regulated by drought in potato[J]. Seed, 34(3): 20-22.) [7] 朱晓林, 魏小红, 王宝强, 等. 2020. 番茄抗黄叶卷曲病相关基因Ty-6的克隆、序列分析及表达特性[J].生物技术通报, 36(07): 40-47. (Zhu X L, Wei X H, Wang B Q, et al. 2020. Cloning, sequence analysis and expression characteristics of Ty-6 gene related to yellow leaf curl resistance in tomato[J]. Biotechnology Bulletin, 36(07): 40-47.) [8] Aliche E B, Theeuwen Tom P J M, Oortwijn M, et al.,2019. Carbon partitioning mechanisms in potatounder drought stress[J]. Plant Physiology Biochemistry, 146(11): 211-219. [9] Anderson J P, Badruzsaufari E, Schenk P M, et al.2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis[J]. Plant Cell 16(11): 3460-3479. [10] Bouaziz D, Pirrello J, Charfeddine M, et al.2013. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants[J]. Molecular Biotechnology, 54(3): 803-817. [11] Charfeddine M, Charfeddine S, Ghazala I, et al.2019. Investigation of the response to salinity of transgenic potato plants overexpressing the transcription factor StERF94[J]. Journal of Biosciences, 44(6): 141-157. [12] Charfeddine M, Saïdi M N, Charfeddine S, et al.2015. Genome-wide analysis and expression profiling of the ERF transcription factor family in potato (Solanum tuberosum L.)[J]. Molecular Biotechnology, 57(4): 348-358. [13] Evers D, Lefevre I, Legay S, et al.2010. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach[J]. Journal of Experimental Botany, 61(9): 2327-2343. [14] Fidalgo F, Santos A, Santos I, et al.2004. Effects of long-term salt stress on antioxidant defence systems, leaf water relations and chloroplast ultrastructure of potato plants[J]. Annals of Applied Biology, 145(2): 185-192. [15] Gutterson N, Reuber T L.2004. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Current Opinion in Plant Biology, 7(4): 465-471. [16] Huang Z, Zhang Z, Zhang X, et al.2004. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J]. FEBS Letters, 573(1-3): 110-116. [17] Jie Q, Zhao J, Zuo K, et al.2004. Isolation and characterization of an ERF-like gene from Gossypium barbadense[J]. Plant Science, 167(6):1383-1389. [18] Jung H, Chung P J, Park S H, et al.2017. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance[J]. Plant Biotechnology Journal, 15(10): 1295-1308. [19] Kim S, Park M, Yeom S I, et al.2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J]. Nature Genetics, 46(3): 270-278. [20] Kitomi Y, Ito H, Hobo T, et al.2011. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS 5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling[J]. Plant Journal, 67(3): 472-484. [21] Lee D K, Jung H, Jang G, et al.2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology, 172(1): 575-588. [22] Lutaladio N, Castaldi L.2009. Potato: The hidden treasure[J].Journal of Food Composition and Analysis, 22(6), 491-493. [23] Ma Y, Zhang L, Zhang J, et al.2014. Expressing a Citrus ortholog of Arabidopsis ERF1 enhanced cold-tolerance in tobacco[J]. Scientia Horticulturae, 17(7): 465-476. [24] McGrath K C, Dombrecht B, Manners J M, et al.2005. Repressor and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identifiedviaagenome-wide screen of Arabidopsis transcription factor gene expression[J]. Plant Physiology, 139(2): 949-959. [25] Mullins E, Milbourne D, Petti C.2006.Potato in the age of biotechnology[J]. Trends in Plant Science, 11(5): 254-260. [26] Nakano T, Suzuki K, Fujimum T, et al.2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 140(2): 411-432. [27] Nishiuchi T, Suzuki K, Kitajima S, et al.2002. Wounding activates immediate early transcription of genes for ERFs in tobacco plants[J]. Plant Molecular Biology, 49: 473-482. [28] Ohme-Takagi M, Suzuki K, Shinshi H.2000. Regulation of ethylene-induced transcription of defense genes[J]. Plant and Cell Physiology, 41(11): 1187-1192. [29] Pandey G K, Grant J J, Cheong Y H, et al.2005. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis[J]. Plant Physiology, 139(3): 1185-1193. [30] Qi X, Tang X, Liu W, et al.2020. A potato RING-finger protein gene StRFP2 is involved in drought tolerance[J]. Plant Physiology and Biochemistry, 146(11): 438-446. [31] Qin J, Zhao J, Zuo K, et al.2004. Isolation and characterization of an ERF-like gene from Gossypium barbadense[J]. Plant Science, 167(4): 1383-1389. [32] Quan R, Hu S, Zhang Z, et al.2010. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnology Journal, 8(4): 476-488. [33] Sakuma Y, Liu Q, Dubouzet J G, et al.2002, DNA-binding specificity of the ERF/AP2 domain of Arabidopsis, DREBs, transcription factors involved in dehydration and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 290(3): 998-1009. [34] Schachtman D P,Goodger J Q.2008. Chemical root to shoot signaling underdrought[J]. Trends in Plant Science, 13(6): 281-287. [35] Seo Y J, Park J B, Cho Y J, et al.2010. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants[J]. Molecular Cells, 30(3): 271-277. [36] Sharoni A, Nuruzzaman M, Satoh K, et al.2011. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 52(2): 344-360. [37] Shinozaki K, Yamaguchi-Shinozaki K.2007. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 58(2): 221-227. [38] Tian Y, Zhang H W, Pan X W, et al.2011. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Research, 20(4): 857-866. [39] Tian Z D, He Q.2015. The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato[J]. Plant and Cell Physiology, 56(5): 992-1005 [40] Todaka D, Shinozaki K, Yamaguchi-Shinozaki K.2015. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants[J]. Frontiers in Plant Science, 6(2): 84-104. [41] Wan L, Zhang J, Zhang H, et al.2011. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLOS ONE, 6(9): e25216. [42] Wessler S R.2005. Homing into the origin of the AP2 DNA binding domain[J]. Trends in Plant Science, 10(2): 54-56. [43] Xie Z L, Nolan T M, Jiang H, et al.2019. Arabidopsis AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses[J].Frontier of Plant Science, 10(2): 228-245. [44] Xu Z S, Chen M, Li L C, et al.2011. Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Journal of Integrative Plant Biology, 53(7): 570-585. [45] Xu Z S, Xia L Q, Chen M, et al.2007. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance[J]. Plant Molecular Biology, 65(6):719-732. [46] Xu W, Jia L, Shi W, et al.2013. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytologist, 197(1): 139-50. [47] Yang Z, Tian L, Latoszek-Green M,et al.2005. Arabidopsis ERF4 is atranscriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Molecular Biology, 58(4): 585-96. [48] Yu Y, Yang D, Zhou S, et al.2017. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice[J]. Protoplasma, 254(1): 401-408. [49] Zarei A, Körbes A P, Younessi P, et al.2011. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis[J]. Plant Molecular Biology, 75(4-5): 321-331. [50] Zhou M L, Ma J T, Pang J F, et al.2010. Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors[J]. African Journal of Biotechnology, 9(54): 9255-9269. [51] Zhuang J, Deng D X, Yao Q H, et al.2010. Discovery, phylogeny and expression patterns of AP2-like genes in maize[J]. Plant Growth Regulation, 62(2): 51-58.