Cloning of the Vacuolar H+-pyrophosphatases Gene BnVP1 from Ramie (Boehmeria nivea) and Expression Analysis Under Cadmium Stress
ZHU Shou-Jing1,2,*, SHI Wen-Juan1
1 College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; 2 Jiangxi Key Laboratory of Regulation and Control of Crop Growth and Development, Yichun 336000, China
Abstract:Cadmium is a heavy metal pollutant with high toxicity to many organisms, which enters into the environment along with industrial and agricultural activities. Vacuolar sequestration is an important mechanism to coping with cadmium stress in plants. Vacuolar H+-pyrophosphatase (V-H+-PPase), a proton pump in vacuolar membrane of plant cells, plays important roles in the transmembrane transport of inorganic ions. In this study, a V-H+-PPase gene, BnVP1 (GenBank No. MW029619) from ramie (Boehmeria nivea) was isolated by the rapid amplification of cDNA ends (RACE) method based on the previous transcriptome analysis of ramie under cadmium stress. The open reading frame sequence of BnVP1 was 2 292 bp and encoded 763 amino acids. BnVP1 was a transmembrane protein belonging to H_PPase superfamily, which contained 15 transmembrane domains. BnVP1 shared high amino acid sequence similarity (90.04%~92.27%) with typeⅠ V-H+-PPase proteins from Prunus persica (XP_007208066.1), Malus domestica (XP_008359855.1), Theobroma cacao (XP_017977384.1) and Gossypium raimondii (XP_012476518.1). The promoter sequence of BnVP1 contained several stress-related cis-acting elements. qRT-PCR showed that the expression of BnVP1 had no tissue specificity. The expression of BnVP1 in the root and leaves of ramie increased rapidly to maximum under cadmium stress, which indicated that the expression of BnVP1 was significantly induced by cadmium. The study enriches the research content of the molecular mechanism of cadmium tolerance in ramie, and provides a reference for the study of cadmium tolerance mechanism of Bnvp1 gene.
[1] 朱守晶, 史文娟, 揭雨成. 2018a. 不同苎麻品种对土壤中镉、铅富集的差异[J]. 江苏农业学报, 34(2): 320-326. (Zhu S J, Shi W J, Jie Y C.2018a. Variety difference in cadmium and lead accumulation by ramie (Boehmeria nivea) from soil[J]. Jiangsu Journal of Agricultural Sciences, 34(2): 320-326.) [2] 朱守晶, 史文娟, 揭雨成, 等. 2018b. 苎麻镉响应转录因子BnMYB1的克隆和表达分析[J]. 农业生物技术学报, 26(5): 774-783. (Zhu S J, Shi W J, Jie Y C, et al.2018b. Cloning and expression analysis of cadmium-responsive transcription factor gene BnMYB1 from ramie (Boehmeria nivea)[J]. Journal of Agricultural Biotechnology, 26(5): 774-783.) [3] 朱守晶, 余伟林, 石朝燕, 等. 2015. 苎麻谷胱甘肽还原酶基因(BnGR1)的克隆和表达分析[J]. 农业生物技术学报, 23(10): 1318-1326. (Zhu S J, Yu W L, Shi Z Y, et al.Cloning and expression analysis of glutathione reductase gene(BnGR1) from ramie, 23(10): 1318-1326.) [4] 尹伟丹, 马玉申, 汪娅梅, 等. 2020. 苎麻BnNRAMP1基因的克隆与表达特异性分析[J]. 分子植物育种, 18(19): 6298-6304. (Yin W D, Ma Y S, Wang Y M, et al.2020. Cloning and expression specificity analysis of BnNRAMP1 gene in ramie. Molecular Plant Breeding[J]. 18(19): 6298-6304.) [5] Abnosi M H, Golami S.2017. Cadmium chloride treatment of rats significantly impairs membrane integrity of mesenchymal stem cells via electrolyte imbalance and lipid peroxidation, a possible explanation of Cd related osteoporosis[J]. Iranian Journal of Basic Medical Sciences, 20(3): 280-287. [6] Cao F B, Dai H X, Hao P F, et al.2020. Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.)[J]. Chemosphere, 240: 124907. [7] Drozdowicz Y M, Kissinger J C, Rea P A.2000. AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis[J]. Plant Physiology, 123(1): 353-362. [8] Drozdowicz Y M, Rea P A.2001. Vacuolar H+ pyrophosphatases: From the evolutionary backwaters into the mainstream[J]. Trends in Plant Science, 6(5): 206-211. [9] Duan X G, Yang A F, Gao F, et al.2007. Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance[J]. Protoplasma, 232(1): 87-95. [10] Gao F, Gao Q, Duan X G, et al.2006. Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance[J]. Journal of Experimental Botany, 57(12): 3259-3270. [11] Hsu Y D, Huang Y F, Pan Y J, et al.2018. Regulation of H+-pyrophosphatase by 14-3-3 proteins from Arabidopsis thaliana[J]. The Journal of Membrane Biology, 251(2): 263-276. [12] Kabała K, Janicka-Russak M, Reda M, et al.2014. Transcriptional regulation of the V-ATPase subunit c and V-PPase isoforms in Cucumis sativus under heavy metal stress[J]. Physiologia Plantarum, 150(1): 32-45. [13] Karlsson J.1975. Membrane-bound potassium and magnesium ion-stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L.)[J]. Biochimica et Biophysica Acta-general Subject, 399(2): 356-363. [14] Khoudi H, Maatar Y, Gouiaa S, et al.2012. Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium[J]. Journal of Plant Physiology, 169(1): 98-103. [15] Lei M, Yue Q L, Chen T B.2005. Heavy metal concentrations in soils and plants around Shizuyuan mining area of Hunan province[J]. Acta Ecologica Sinica, 25(5): 1146-1151. [16] López E, Arce C, Oset-Gasque M J, et al.2006. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radical Biology and Medicine, 40(6): 940-951. [17] Maeshima M.2000. Vacuolar H+-pyrophosphatase[J]. Biochimica et Biophysica Acta, 1465(1-2): 37-51. [18] Martinoia E, Maeshima M, Neuhaus H E.2007. Vacuolar transporters and their essential role in plant metabolism[J]. Journal of Experimental Botany, 58(1): 83-102. [19] Nakanishi Y, Maeshima M.1998. Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean[J]. Plant Physiology, 116(2): 589-597. [20] Salt D E, Wagner G J.1993. Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity[J]. Journal of Biological Chemistry, 268(17): 12297-12302. [21] Sarafian V, Kim Y, Poole R J, et al.1992. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the USA, 89(5): 1775-1779. [22] Segami S, Nakanishi Y, Sato M H, et al.2010. Quantification, organ-specific accumulation and intracellular localization of typeⅡ H+-pyrophosphatase in Arabidopsis thaliana[J]. Plant and Cell Physiology, 51(8): 1350-1360. [23] Serrano A, Pérez-Castiñeira J, Baltscheffsky M, et al.2007. H+-PPases: Yesterday, today and tomorrow[J]. International Union of Biochemistry and Molecular Biology Life, 59: 76-83. [24] She W, Zhu S J, Jie Y C, et al.2015. Expression profiling of cadmium response genes in ramie (Boehmeria nivea L.) root[J]. Bulletin of Environmental Contamination and Toxicology, 94(4): 453-459. [25] Wang H B, Wong M H, Lan C Y, et al.2007. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution, 145(1): 225-233. [26] Wang L, Cui X, Cheng H, et al.2015. A review of soil cadmium contamination in China including a health risk assessment[J]. Environmental Science and Pollution Research, 22(21): 16441-16452. [27] Yang B, Zhou M, Shu W S, et al.2010. Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage[J]. Environmental Pollution, 158(2): 551-558. [28] Yao M H, Zeng Y L, Liu L, et al.2012. Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana[J]. Molecular Biology Reports, 39(8): 7989-7996. [29] Zhang J, Martinoia E, Lee Y.2018. Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development[J]. Plant and Cell Physiology, 59(7): 1317-1325. [30] Zhang X F, Gao B, Xia H P.2014. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass[J]. Ecotoxicology and Environmental Safety, 106: 102-108. [31] Zhang Y M, Feng X, Wang L H, et al.2020. The structure, functional evolution, and evolutionary trajectories of the H+-PPase gene family in plants[J]. BMC Genomics, 21(1): 195. [32] Zhu S J, Shi W J, Jie Y C, et al.2020. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation[J]. PLOS ONE, 15(5): e0233375.