Application and Prospect of Functional Microorganisms Based on Synthetic Biology in Comprehensive Treatment of Heavy Metal Pollution
SU Dong-Hai1, GUO Ming-Zhang2, LIU Yang-Er2, ZHOU Zi-Qi2, ZHANG Xiao-Hui1, ZHAI Bai-Qiang, XU Wen-Tao2,*
1 Beijing Polytechnic, Beijing 100029, China; 2 Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100194, China; 3 Zhengzhou University of Light Industry, Zhengzhou 450001, China; 4 Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou 451460, China
Abstract:With the development of industry, the content of heavy metals in the earth-surface is increasing, which seriously threatens human health. Among the technologies for treatment of heavy metal pollution, microbial remediation technology has attracted much attention due to its advantages of low cost, simple operation and environmental friendliness. However, the low efficiency of microbial remediation technology limits its application. Synthetic biology combines biotechnology and engineering theory. Through the de novo design of microbial gene network, microorganisms can complete various tasks of artificial design. Synthetic biology has many applications in improving the efficiency of microbial remediation of heavy metals. Under the guidance of synthetic biology, a large number of microbial biosensors for heavy metal detection, microbial functional strains for heavy metal adsorption, and microbial factories for the production of heavy metal nano-particles have been developed. This review provides a new systemic and complete solution for the comprehensive treatment of heavy metals.
苏东海, 郭明璋, 刘洋儿, 周子琦, 张晓辉, 翟百强, 苏东民, 许文涛. 基于合成生物学的功能微生物在重金属污染治理中的应用与展望[J]. 农业生物技术学报, 2021, 29(3): 579-590.
SU Dong-Hai, GUO Ming-Zhang, LIU Yang-Er, ZHOU Zi-Qi, ZHANG Xiao-Hui, ZHAI Bai-Qiang, XU Wen-Tao. Application and Prospect of Functional Microorganisms Based on Synthetic Biology in Comprehensive Treatment of Heavy Metal Pollution. 农业生物技术学报, 2021, 29(3): 579-590.
[1] 杜若曦, 郭明璋, 谢子鑫, 等. 2018. 合成生物学在改善肠道健康状态中的应用与展望[J]. 生物技术通报, 034(001): 49-59. (Du R X, Guo M Z, Xie Z X, et al.2018. Application and prospect of synthetic biology in improving intestinal health[J]. Biotechnology Bulletin, 034(001): 49-59.) [2] 何婧雯, 熊海容, 王靖, 等. 2019. 金属硫蛋白的研究现状及进展[J]. 农产品加工学刊, 000(009): 72-75. (He J W, Xiong H R, Wang J, et al., 2019. Research status and progress of metallothionein[J]. Farm Products Processing, 000(009): 72-75.) [3] 黄芸, 袁洪, 黄志军,等. 2016. 环境重金属暴露对人群健康危害研究进展[J]. 中国公共卫生, 032(008): 1113-1116. (Huang Y, Yuan H, Huang Z J, et al.2016. Progress in research on environmental exposure and health hazards of heavy metals in China[J]. Chinese Journal of Public Health. 032(008): 1113-1116. ) [4] 李司宇, 刘雪, 王文婧,等. 2020. 微生物在重金属离子污染修复及治理中的应用研究[J]. 环境与可持续发展, 700(02): 160-162. (Li S Y, Liu X, Wang W J, et al.2020. Study on microorganism in the remediation and treatment of heavy metal ion pollution[J]. Environment and Sustainable Development, 700(02): 160-162.) [5] 刘金香. 2020. 改性微生物吸附剂在重金属废水处理中的应用进展[J]. 微生物学通报, 47(3): 941-951. (Liu J X.2020. Application progress of modified microbial adsorbents for the treatment of heavymetal wastewater[J]. Microbiology China, 47(3): 941-951.) [6] 刘少文, 焦如珍, 董玉红, 等. 2017. 土壤重金属污染的生物修复研究进展[J]. 林业科学, 5: 146-155. (Liu S W, Jiao R Z, Dong Y H, et al.2017. Research progress in bioremediation of heavy-metal contaminated soil[J]. Scientia Silvae Sinicae, 5: 146-155.) [7] 孟菁华, 史学峰, 向怡,等. 2017. 大气中重金属污染现状及来源研究[J]. 环境科学与管理, 8: 51-53. (Meng J H, Shi X F, Xiang Y, et al.2017. Current status and sources of heavy metal in atmosphere[J]. Environmental Science and Management, 8: 51-53. ) [8] 唐鸿志, 王伟伟, 张莉鸽,等. 2017. 合成生物学在环境修复中的应用[J]. 生物工程学报, 33(3): 506-515. (Tang H Z, Wang W W, Zhang L G, et al.2017. Application of synthetic biology in environmental remediation. Chinese Journal of Biotechnology, 33(3): 506-515.) [9] 王磊峰, 王倩倩, 魏丽琼,等. 2013. 生物法处理重金属废水研究状况[J]. 化工技术与开发, 042(001): 40-41. (Wang L F, Wang Q Q, Wei LQ, et al.2013. Study status of heavy metal wastewater by biologic treatment[J]. Technology & Development of Chemical Industry, 042(001): 40-41.) [10] 于寒松, 隋佳辰, 代佳宇, 等. 2015. 核酸适配体技术在食品重金属检测中的应用研究进展[J]. 食品科学, (15): 228-233. (Yu H S, Sui J C, Dai J Y, et al. 2015. Advances in the application of aptamers to detect heavy metals in foods[J]. Food Science, (15): 228-233.) [11] 曾艳, 赵心刚, 周桔. 2018. 合成生物学工业应用的现状和展望[J]. 中国科学院院刊, 033(011): 1211-1217. (Zeng Y, Zhao X G, Zhou J.2018. Current situations and perspectives of industrial applications of synthetic biology[J]. Bulletin of the Chinese Academy of Sciences, 033(011): 1211-1217) [12] 周建军, 周桔, 冯仁国. 2014. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 029(003): 315-320. (Zhou J J, Zhou J, Feng G R.2014. Status of China's heavy metal contamination in soil and its remediation strategy[J]. Bulletin of the Chinese Academy of Sciences, 029(003): 315-320.) [13] Bae W, Wu C H, Kostal J, et al.2003. Enhanced mercury biosorption by bacterial cells with surface-displayed merr[J]. Applied & Environmental Microbiology, 69(6):3176-80. [14] Biondo R, Silva F A, Eduardo J, et al.2012. Synthetic phytochelatin surface display in cupriavidus metallidurans ch34 for enhanced metals bioremediation[J]. Environmental Science & Technology, 46(15): 8325-8332. [15] Brown N L, Stoyanov J, Kidd S P, et al.2003. The MerR family of transcriptional regulators[J]. Fems Microbiology Reviews, 27(2): 145-163. [16] Calderón O A R, Abdeldayem O M, Pugazhendhi A, et al.2020. Current updates and perspectives of biosorption technology: An alternative for the removal of heavy metals from wastewater[J]. Current Pollution Reports, 6(5): 8-27. [17] Changela A, Chen K, Xue Y, et al.2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR[J]. Science, 301(5638): 1383-1387. [18] Chi H, Wang X, Shao Y, et al.2019. Engineering and modification of microbial chassis for systems and synthetic biology[J]. Synthetic and Systems Biotechnology, 4(1): 25-33. [19] Choi Y, Park T J, Lee D C, et al.2018. Recombinant Escherichia coli as a biofactory for various single-and multi-element nanomaterials[J]. Proceedings of the National Academy of Sciences of the USA, 115(23): 5944-5949. [20] Du R X, Guo M Z, He X Y, et al.2019. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors[J]. Analytica Chimica Acta, 1084:85-92. [21] Durán N, Marcato P D, Durán M, et al.2011. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants[J]. Applied Microbiology & Biotechnology, 90(5): 1609-1624. [22] Gudipaty, SA, Mcevoy, M M.2014. The histidine kinase CusS senses silver ions through direct binding by its sensor domain[J]. Biochimica et biophysica acta, 1844(9): 1656-1661. [23] Guo M, Du R, Xie Z, et al.2019. Using the promoters of MerR family proteins as “rheostats” to engineer whole-cell heavy metal biosensors with adjustable sensitivity[J]. Journal of Biological Engineering, 13(1): 1-9. [24] Hui, C, Guo, Y, Yang X, et al.2018. Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead(II) adsorption[J]. Biotechnology Letter, 40: 837-845. [25] Jacobs F A, Romeyer F M, Beauchemin M, et al.1989. Human metallothionein-II is synthesized as a stable membrane-localized fusion protein in Escherichia coli[J]. Gene, 83(1): 95-103. [26] Jia X Q, Zhao T T, Liu Y L, et al.2018. Gene circuit engineering to improve the performance of a whole-cell lead biosensor[J]. FEMS Microbiology Letters, 365(16): 1-8. [27] Kang S H, Bozhilov K N, Myung N V, et al.2008. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli[J]. Angewandte Chemie, 47(28): 5186-5189. [28] Khalil A S, Collins J J.2010. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 11(5):367-379. [29] Kim H J, Jeong H, Lee S J.2018. Synthetic biology for microbial heavy metal biosensors[J]. Analytical and Bioanalytical Chemistry, 410:1191-1203. [30] King J M H, Digrazia P M, Applegate B, et al.1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation[J]. Science, 249(4970): 778-781. [31] Kotrba P, Pospisil P, De Lorenzo V, et al.1999. Enhanced metallosorption of Escherichia coli cells due to surface display of β- and α-domains of mammalian metallothionein as a fusion to lamb protein[J]. Journal of Receptors and Signal Transduction, 19: 703-715. [32] Li H, Dong W, Liu Y, et al.2019. Enhanced biosorption of nickel ions on immobilized surface-engineered yeast using nickel-binding peptides[J]. Frontiers in Microbiology, 10:1254. [33] Li P, Tao H.2015. Cell surface engineering of microorganisms towards adsorption of heavy metals[J]. Critical Reviews in Microbiology, 41(2): 140-149. [34] Lin K H, Chien M F, Hsieh J L, et al.2010. Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein[J]. Applied Microbiology & Biotechnology, 87(2):561-569. [35] Liu J, Zhu N, Zhang Y, et al.2020. Transcription profiling-guided remodeling of sulfur metabolism in synthetic bacteria for efficiently capturing heavy metals[J]. Journal of Hazardous Materials, 403:123638. [36] Maruthamuthu MK, Ganesh I, Ravikumar S, et al.2015. Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli[J]. Biotechnology Letters, 37(3): 659-64. [37] Mauro J M, Pazirandeh M.2000. Construction and expression of functional multi-domain polypeptides in Escherichia coli: Expression of the Neurospora crassa metallothionein gene[J]. Letters in Applied Microbiology, 30:161-6. [38] Mejare M, Ljung S, Bulow L, et al.1998. Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli[J]. Protein Engineering, 11(6): 489-494. [39] Moon T S, Lou C, Tamsir A, et al.2012. Genetic programs constructed from layered logic gates in single cells[J]. Nature, 491(7423): 249-253. [40] Nilgiriwala K S, Jimenez J I, Rivera P M, et al.2015. Synthetic tunable amplifying buffer circuit in E. coli[J]. ACS Synthetic Biology, 4(5): 577-584. [41] Osman D, Cavet J S.2010. Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors[J]. Natural Product Reports, 27(5): 668-680. [42] Park T J, Lee K G, Lee S Y, 2016. Advances in microbial biosynthesis of metal nanoparticles[J]. Applied Microbiology & Biotechnology, 100(2): 521-534. [43] Park T J, Lee S Y, Heo N S, et al.2010. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli[J]. Angewandte Chemie, 49(39): 7019-7024. [44] Pazirandeh M, Wells B M, Ryan R L, et al.1998. Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif[J]. Applied and Environmental Microbiology, 64(10): 4068-4072. [45] Perron, K, Caille, O, Rossier, C, et al.2004. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa[J]. Journal of Biological Chemistry, 279(10): 8761. [46] Potvintrottier L, Lord N D, Vinnicombe G, et al.2016. Synchronous long-term oscillations in a synthetic gene circuit[J]. Nature, 538(7626): 514-517. [47] Ravikumar S, Yoo I K, Lee S Y, et al.2011. Construction of copper removing bacteria through the integration of two-component system and cell surface display[J]. Applied Biochemistry and Biotechnology, 165: 1674-1681. [48] Shetty RS, Ramanathan S, Badr IHA, et al.1999. Green fluorescent protein in the design of a living biosensing system for L-arabinose[J]. Analytical Chemistry, 71(4): 763-768. [49] Sousa C, Cebolla A, De Lorenzo V, et al.1996. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides[J]. Nature Biotechnology, 14(8): 1017-1020. [50] Sousa C, Kotrba P, Ruml T, et al.1998. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB.[J]. Journal of Bacteriology, 180(9):2280-2284. [51] Stiner L, Halverson L J.2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds[J]. Applied and Environmental Microbiology, 68(4): 1962-1971. [52] Tang X, Zeng G, Fan C, et al.2018. Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions[J]. Science of the Total Environment, 636: 1355. [53] Tay P K, Nguyen P Q, Joshi N S, et al.2017. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids[J]. ACS Synthetic Biology, 6(10): 1841-1850. [54] Valls M, Atrian S, de Lorenzo V, et al.2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil[J]. Nature Biotechnology, 18(6):661-665. [55] Wang B, Barahona M, Buck M, et al.2014. Engineering modular and tunable genetic amplifiers for scaling transcriptional signals in cascaded gene networks[J]. Nucleic Acids Research, 42(14): 9484-9492. [56] Yang L, Nielsen AA, Fernandezrodriguez J, et al.2014. Permanent genetic memory with >1-byte capacity[J]. Nature Methods, 11(12): 1261-1266. [57] Zhu N, Zhang B,Yu Q.2020. Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal[J]. ACS Applied Materials & Interfaces. 12(20), 22948-22957.