1 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; 2 Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China; 3 Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
Abstract:The transgenic technology has been concerned greatly by people all over the world nowadays. Genetically modified organisms (GMOs),especially the GM crops have caused several controversial issues, including health problems, ecological environmental risks and even ethical concerns. From the perspective of 'Functional Nucleic Acid' and 'Biosensors', this review summarized molecular amplification techniques, different ways of signal output and nanomaterials -based functional nucleic acid biosensors for detection of genetically modified ingredients. Finally, the challenges and trends in the future development of genetically modified components' detection are prospected. This review will be helpful for promoting the development of test techniques for GMOs and the progress of functional nucleic acid-based biosening disciplines.
[1] 葛悦涛. 2012. 基于纳米金标记的MEMS压阻悬臂梁生物芯片关键技术研究 [D]. 博士学位论文,北京邮电大学. 导师:邓中亮. pp. 41-54. (Ge Y.2012. Research on key technology of MEMS piezoresistive cantilever beam biochip based on nano gold tag [D]. Thesis for Ph. D., Beijing University of Posts and Telecommunications. Supervisor: Deng Z L, pp. 41-54.) [2] 贾玄, 李凯, 董美, 等. 2017. 转基因水稻 PA110- 15 基于 RPA 等温扩增及 DNA 试纸条联检的品系特异性检测方法[J]. 分子植物育种, 15(12): 5210-5215. (Jia X, Li K, Dong M, et al.2017. The event-specific detection of transgenic rice PA110-15 based on recombinase polymerase amplification coupled with DNA lateral flow strip[J]. Molecular Plant Breeding, 15(12): 5210-5215.) [3] 徐潮. 2014. 重组酶介导的等温扩增技术在转基因检测中的应用 [D]. 硕士学位论文. 中国农业科学院, 导师: 金芜军. pp. 61-69. (Xu C.2014. Application of recombinant enzyme-mediated isothermal amplification in transgenic detection [D]. Thesis for M. S., Chinese Academy of Agricultural Sciences, Supervisor: Jin W J, pp. 61-69) [4] Aghili Z, Nasirizadeh N, Divsalar A, et al.2017. A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products[J]. Biosensors & Bioelectronics, 95: 72-80. [5] Cheng N, Shang Y, Xu Y, et al.2017. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor[J]. Biosensors & Bioelectronics, 91: 408-416. [6] Feriotto G, Borgatti M, Mischiati C, et al.2002. Biosensor technology and surface plasmon resonance for real-time detection of genetically modified roundup ready soybean gene sequences[J]. Journal of Agricultural and Food Chemistry, 50: 955-962. [7] Hindson B J, Ness K D, Masquelier D A, et al.2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number[J]. Analytical Chemistry, 83: 8604-8610. [8] Holck A L, Pedersen B O.2011. Simple, sensitive, accurate multiplex quantitative competitive PCR with capillary electrophoresis detection for the determination of genetically modified maize[J]. European Food Research & Technology, 233: 951-961. [9] Jiang X, Zhang H, Wu J, et al.2014. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food[J]. Talanta, 128: 445-449. [10] Li F, Yan W, Long L, et al.2014. Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops[J]. International Journal of Molecular Sciences, 15: 15109-15121. [11] Liu Y, Whittier R F.1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics, 25: 674-681. [12] Luo L, Nie K, Yang M J, et al.2011. Visual detection of high-risk human papillomavirus genotypes 16, 18, 45, 52, and 58 by loop-mediated isothermal amplification with hydroxynaphthol blue dye[J]. Journal of Clinical Microbiology, 49: 3545-3550. [13] Mano J, Hatano S, Nagatomi Y, et al.2018. Highly sensitive GMO detection using real-time PCR with a large amount of dna template: Single-laboratory validation[J]. Journal of AOAC International, 101(2): 507-514. [14] Mariottie E, Minunni M, Mascini M.2002. Surface plasmon resonance biosensor for genetically modified organisms detection[J]. Analytica Chimica Acta, 453: 165-172. [15] Meistertzheim A L, Calves I, Artigaud S, et al.2012. High resolution melting analysis for fast and cheap polymorphism screening of marine populations[J]. Protocol Exchange, Doi: 10.1038/protex.2012.015. [16] Morisset D, Štebih D, Milavec M, et al.2013. Quantitative analysis of food and feed samples with droplet digital PCR[J]. PLOS ONE, 8: e62583. [17] Nan Z, Xu W, Bai W, et al.2011. Event-specific qualitative and quantitative PCR detection of LY038 maize in mixed samples[J]. Food Control, 22: 1287-1295. [18] Niu C, Xu Y, Zhang C, et al.2018. Ultrasensitive single fluorescence-labeled probe-mediated single universal primer-multiplex-droplet digital polymerase chain reaction for high-throughput genetically modified organism screening[J]. Analytical Chemistry, 90: 5586-5593. [19] Pfeifer G P, Steigerwald S D, Mueller P R, et al.1989. Genomic sequencing and methylation analysis by ligation mediated PCR[J]. Science, 246: 810-813. [20] Qiu B, Zhang Y S, Lin Y B, et al.2013. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter[J]. Biosensors & Bioelectronics, 41: 168-171. [21] Santiago-Felipe S,Tortajada-Genaro L A, Puchades R, et al.2014. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis[J]. Analytica Chimica Acta, 811: 81-87. [22] Trinh Q, Xu W, Shi H, et al.2012. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias[J]. Analytical Biochemistry, 425: 62-67. [23] Truong T N, Tran D L, Vu T H, et al.2010. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS[J]. Talanta, 80: 1164-1169. [24] Wang M Q, Xiao D U, Liu L Y, et al.2008. DNA biosensor prepared by electrodeposited Pt-nanoparticles for the detection of specific deoxyribonucleic acid sequence in genetically modified soybean[J]. Chinese Journal of Analytical Chemistry, 36: 890-894. [25] Wen T X, Nan Z, Yun B L, et al.2011. Establishment and evaluation of event-specific qualitative and quantitative PCR method for genetically modified soybean DP-356043-5[J]. European Food Research & Technology, 233: 685. [26] Xu W.2016. Functional Nucleic Acids Detection Food Safety[M]. Springer, pp. 1-15. [27] Xu W, Wan C, Zhu P, et al.2016. Real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons[J]. Analyst, 141: 2542-2552. [28] Yang L, Pan A, Zhang K, et al.2005. Qualitative and quantitative pcr methods for event-specific detection of genetically modified cotton Mon1445 and Mon531[J]. Transgenic Research, 14: 817-831. [29] Yang L, Xu S, Pan A, et al.2005. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence[J]. Journal of Agricultural & Food Chemistry, 53: 9312-9318. [30] Zhu L, Liu Q, Yang B, et al.2018. Pixel counting of fluorescence spots triggered by DNA walkers for ultrasensitive quantification of nucleic acid. analytical chemistry[J]. Analytical Chemistry, 90(11): 6357-6361. [31] Zhu L, Xu Y, Cheng N, et al.2016. A facile cascade signal amplification strategy using DNAzyme loop-mediated isothermal amplification for the ultrasensitive colorimetric detection of Salmonella[J]. Sensors & Actuators B: Chemical, 242: 880-888. [32] Zimmermann A, Lüthy J, Pauli U, et al.2000. Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site[J]. LWT-Food Science and Technology, 33(3): 210-216.