Abstract:Myostatin (MSTN) is mainly expressed in skeletal muscle and is involved in regulating the growth and development of skeletal muscle. Mutations in the MSTN gene cause excessive muscle development, resulting in a double-muscle phenotype. In this study, MSTN gene-edited Luxi cattle (Bos taurus) skeletal muscle was used as material to explore the effect of MSTN knockout on bovine muscle phenotype, and to explore the mechanism of MSTN gene regulation of muscle development through the transcriptome. 4 typical skeletal muscles, such as soleus, gastrocnemius, semitendinosus and longissimus dorsi, were taken as materials. The hematoxylin-eosin staining sections of these 4 skeletal muscles were used to observe the effect of MSTN gene knockout on skeletal muscle. qRCR and Western blot were used to detect the mRNA and protein expression of MSTN in these four skeletal muscles. Finally, through transcriptome analysis, the target genes of the mechanism of MSTN knockout on skeletal muscle of Luxi cattle were explored. The results showed that compared with ordinary Luxi cattle, the cross-sectional area of muscle fibers in the skeletal muscle of MSTN gene-edited cattle was significantly increased, and the intermuscular fat was significantly reduced. Transcriptome sequencing results showed that a total of 5 945 differentially expressed genes were identified between the skeletal muscle of MSTN gene-edited cattle and ordinary cattle (FC>1.5, P<0.05), of which the expression was up-regulated in the skeletal muscle of MSTN gene-edited cattle. There were 672 genes and 5 273 down-regulated genes; these differential genes were mainly concentrated in the signaling pathways such as PI3K-Akt, MAPK, p53 and AMPK, and were involved in the developmental processes of muscle satellite cell proliferation and differentiation. Studies have shown that MSTN gene deletion promotes the expression and regulation of genes related to muscle development and differentiation, and increases the cross-sectional area of skeletal muscle fibers, resulting in a muscle hypertrophy phenotype. These results add a little more insight to bovine skeletal muscle research.
[1] 高丽, 杨磊, 李光鹏. 2021. Myostatin基因突变激发骨骼肌发育机制研究进展[J]. 生物技术进展, 11(4): 476-482. (Gao L, Yang L, Li G P.2021. Research progress on the mechanism of skeletal muscle development stimulated by Myostatin gene mutation[J]. Current Biotechnology, 11(4): 476-482.) [2] 李光鹏, 白春玲, 魏著英, 等. 2020. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 51(1): 12-32. (Li G P, Bai C L, Wei Z Y, et al.2020. Research on Myostatin gene editing in cattle[J]. Journal of Inner Mongolia University (Natural Science Edition), 51(1): 12-32.) [3] 李光鹏, 张立. 2017. 中国转基因家畜最新研究进展[J]. 内蒙古大学学报(自然科学版), 48(04): 346-355. (Li G P, Zhang L.2017. The latest research progress of genetically modified livestock in China[J]. Journal of Inner Mongolia University (Natural Science Edition), 48(04): 346-355.) [4] 李欣, 海超, 刘春丽, 等. 2020. 肌肉生长抑制素基因(MSTN)编辑牛的肉质相关蛋白质组学研究[J]. 农业生物技术学报, 28(11): 1970-1984. (Li X, Hai C, Liu C L, et al.2020. Proteomics study on meat quality of myostatin (MSTN) gene-edited cattle (Bos taurus)[J]. Journal of Agricultural Biotechnology, 28(11): 1970-1984.) [5] 苗曼宁, 郭益文, 胡德宝, 等. 2021. MSTN基因编辑牛肌肉转录组测序及生物信息学分析[J]. 中国畜牧兽医, 48(7): 2271-2281. (Miao M N, Guo Y W, Hu D B, et al.2021. Transcriptomes sequencingand bioinformatics analysis of MSTN gene-edited bovine muscles[J]. China Animal Husbandry & Veterinary Medicine, 48(7): 2271-2281.) [6] 王鑫, 高广琦, 魏著英, 等. 2018. 杂交F1代myostatin基因编辑肉牛的肉质特性分析[J]. 中国牛业科学, 44(3): 1-7. (Wang X, Gao G Q, Wei Z Y, et al.2018. Meat quality analysis of hybrid F1 generation myostatin gene-edited beef cattle[J]. Chinese Cattle Science, 44(3): 1-7.) [7] 王鑫, 李光鹏. 2019 牛肉质性状及其影响因素[J]. 动物营养学报, 31: 4949-4958. (Wang X, Li G P.2019. Beef quality characters and its influencing factors[J]. Chinese Journal of Animal Nutrition, 31: 4949-4958.) [8] 魏著英, 白春玲, 李光鹏2018. 牛肌肉生长抑制素基因突变的遗传效应与育种应用[J]. 生物技术进展, 8(3): 197-205. (WEI Z Y,BAI C L,LI G P.2018. Genetic effect and breeding application of myostatin gene mutation in beef cattle[J]. Current Biotechnology, 8(3): 197-205.) [9] 张磊, 杨永杰, 张燕君. 2011. 骨骼肌生长调控信号通路[J]. 生物学杂志, 28(5): 70-72, 76. (Zhang L, Yang Y J, Zhang Y J.2011. Research progress on signalling of skeletal muscle size control[J]. Journal of Biology, 28(5): 70-72, 76.) [10] 郑莉芳, 陈佩杰, 肖卫华. 2019. 骨骼肌质量控制信号通路[J]. 生理学报, 71(4): 671-679. (Zheng L F, Chen P J, Xiao W H.2019. Signaling pathways controlling skeletal muscle mass[J]. Acta Physiologica Sinica, 71(4): 671-679.) [11] 周新宇, 魏著英, 陈晨, 等. 2020. 运动对Mstn基因编辑与非编辑牛血清代谢的影响[J]. 农业生物技术学报, 28(12): 2176-2188. (Zhou X Y, Wei Z Y, Chen C, et al.2020. Effects of exercise on Mstn gene editing and non-editing bovine (Bos taurus) serum metabolism[J]. Journal of Agricultural Biotechnology, 28(12): 2176-2188.) [12] Aiello D, Patel K, Lasagna E.2018. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals[J]. Animal Genetics, 49(6): 505-519. [13] Bi Y, Hua Z, Liu X, et al.2016. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Scientific Reports, 179(6): 31729. [14] de Wilde J, Hulshof MF, Boekschoten MV, et al.2010. The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way[J]. BMC Genomics, 11: 176. [15] Fortin M, Videman T, Gibbons L E, et al.2014. Paraspinal muscle morphology and composition: A 15-yr longitudinal magnetic resonance imaging study[J]. Medicine and Science in Sports and Exercise, 46(5): 893-901. [16] Frontera W R, Ochala J.2015. Skeletal muscle: A brief review of structure and function[J]. Calcified Tissue International, 96(3): 183-195. [17] Hennebry A, Berry C, Siriett V, et al.2009. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression[J]. American Journal of Physiology. Cell Physiology, 296(3): C525-534. [18] Javan R, Horvath J J, Case L E, et al.2013. Generating color-coded anatomic muscle maps for correlation of quantitative magnetic resonance imaging analysis with clinical examination in neuromuscular disorders[J]. Muscle & Nerve, 48(2): 293-295. [19] Jiang Z, Zhou X, Li R, et al.2015. Whole transcriptome analysis with sequencing: Methods, challenges and potential solutions[J]. Cellular and Molecular Life Sciences, 72(18): 3425-3439. [20] Lin J, Arnold H B, Della-Fera M A, 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochemical and Biophysical Research Communications, 291(3): 701-706. [21] Luo J, Song Z, Yu S, et al.2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases[J]. PLOS ONE, 9(4): e95225. [22] Lv Q, Yuan L, Deng J, et al.2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9[J]. Scientific Reports, 6: 25029. [23] McFarlane C, Plummer E, Thomas M, et al.2006. Myostatin induces cachexia by activating the ubiquitin proteo-lytic system through an NF-κB-independent, FoxO1-de-pendent mechanism[J]. Journal of Cellular Physiology, 209(2): 501-514. [24] Mcpherron A C, Lee S J.1997. Double muscling in cattle due to mutations in the myostatin gene[J]. Proceedings of the National Academy of Sciences, 94(23): 12457-12461. [25] Qian L, Tang M, Yang J, et al.2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Scientific Reports, 5: 14435. [26] Rao S, Fujimura T, Matsunari H, et al.2016. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets[J]. Molecular Reproduction and Development, 83(1): 61-70. [27] Sharma M, Mcfarlane C, Kambadur R, et al.2015. Myostatin: Expanding Horizons[J]. IUBMB Life, 67(8): 589-600. [28] Turner D C, Gorski P P, Maasar M F, et al.2020. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: The role of HOX genes and physical activity[J], Scientific Reports, 10(1): 15360. [29] Wang K, Ouyang H, Xie Z, et al.2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Scientific Reports, 5: 16623. [30] Wang L, Cai B, Zhou S, et al.2017. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout[J]. PLOS ONE, 12(12): e0187966. [31] Wang X, Niu Y, Zhou J, et al.2018. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Animal Genetics, 49(1): 43-51. [32] Xu K, Han C X, Zhou H, et al.2020. Effective MSTN gene knockout by AdV-delivered CRISPR/Cas9 in postnatal chick leg muscle[J]. International Journal of Molecular Medicine, 21(7): 2584. [33] Yang J, Ratovitski T, Brady J P, et al.2001. Expression of myostatin pro domain results in muscular transgenic mice[J]. Molecular Reproduction and Development, 60(3): 351-361. [34] Zhou Z R, Zhong B S, Jia R X, et al.2013. Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells[J]. Theriogenology, 79(2): 225-233. [35] Zhu J, Giannola DM, Zhang Y, et al.2003. NF-Y cooperaties with USF-1/2 to induce the hematopoietic expression of HOXB4[J]. Blood, 102: 2420-2427. [36] Zou Q, Wang X, Liu Y, et al.2015. Generation of gene-target dogs using CRISPR/Cas9 system[J]. Journal of Molecular Cell Biology, 7(6): 580-583.