Target Gene Prediction Analysis and Partial Target Gene Verification of Pig (Sus scrofa) miR-339-3p
WANG Wei1, HUANG Xiao-Yu1, YAN Zun-Qiang1, MA Xiao-Wen3, WANG Peng-Fei1, XIE Kai-Hui1, LUO Rui-Rui1, GAO Xiao-Li1, MA Yan-Ping4, GUN Shuang-Bao1, 2, *
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
2 Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China;
3 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
4 Gansu Agricultural University Library, Lanzhou 730070, China
Abstract:miRNAs (microRNAs) play a role in a variety of physiological and pathological processes.miRNAs play biological functions through the corresponding target genes.By combining bioinformatics prediction and experimental verification, miRNA target genes can be rapidly and efficiently screened.In our early study, high-throughput sequencing revealed that ssc-miR-339-3p was differentially expressed between control group and treatment group on piglets (Sus scrofa) infected with Clostridium perfringens type C, suggesting that it might have played an important role in the infection process.This study aimed to bioinformatics prediction and analysis of the target genes of ssc-miR-339-3p, and to verify the ssc-miR-339-3p and partial target genes, to explore its possibility influence and regulating mechanism of piglets diarrhea.In this study, bioinformatics databases such as miRBase, Ensemble, NCBI, miRTarBase, and bioinformatics software such as PITA, RNAhybrid, miRanda, Promoter Scan, Alibaba2.1, DAVID, Cytoscape, were used to perform the prediction of transcription factor binding site and conservative analysis among different species of its target genes, involved Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.qRT-PCR was used to verify the expressions of ssc-miR-339-3p and some target genes.The results showed that miR-339-3p was highly conserved among species, and multiple transcription factor binding sites such as Sp1, AP-1, C/EBPα, NF- κB, SRF and USF, were found in the ssc-miR-339-3p promoter region.The obtained 160 target genes are significantly enriched in positive regulation of MAP kinase activity, positive regulation of apoptosis, negative regulation of RNA polymerase Ⅱ promoter transcription, apoptosis signaling pathway and other biological processes and participated in NF-κB, PI3K-Akt, FoxO and Toll-like receptors signal pathways.qRT-PCR results showed that the expression level of ssc-miR-339-3p was significantly lower in the resistance groups (IR) and sensitive groups (IS) than in the control groups (IC) (P<0.05), this result was consistent with the high-throughput sequencing results; the expression levels of the target genes nuclear factor kappa-B 1 (NFKB1) and B-cell surface antigen CD40 (CD40) were significantly higher between IR and IS groups than the IC group (P<0.01); the expression of TNF receptor-associated factor 3 (TRAF3) and interleukin 1 receptor associated kinase 1 (IRAK1) were not significantly different among the 3 groups (P>0.05).Therefore, we assumed that ssc-miR-339-3p is regulated by various transcription factors such as Sp1, NF-κB and USF, which may activate NF-κB, PI3K-Akt, FoxO and Toll-like receptors signal pathways to regulate the piglets diarrhea through the target genes NFKB1, TRAF3, IRAK1, CD40.This study predicts and preliminarily validates the obtained target genes, which may provide experimental and theoretical basis for the function and regulating mechanism of miR-339-3p in piglet's resistance to Clostridium perfringens infection, thereby it can provide a theoretical basis for searching for the effective molecular genetic markers of resistance to Clostridium perfringens type C in piglets.
[1] 杜子栋.2012.E.coli F18 敏感型和抵抗型断奶仔猪十二指肠差异 miRNAs 的筛选及验证分析[D].硕士学位论文, 扬州大学, 导师: 朱国强, 吴圣龙, pp.27-36.
(Du Z D.2012.Analysis of differential miRNAs in duodenum of E.coli F18 sensitive and resistant weaned piglets[D].Thesis for M.S., Yangzhou University, Supervisor: Zhu G Q, Wu S L, pp.27-36.)
[2] 郭云涛, 张秀秀, 苗向阳.2015.牛miR-320a的靶基因预测及生物信息学分析[J].畜牧兽医学报, 46(11): 1952-1960.
(Guo Y T, Zhang X X, Miao X Y.2015.Target gene prediction and bioinformatics analysis of bta-miR-320a[J].Chinese Journal of Animal and Veterinary Sciences, 46(11): 1952-1960.)
[3] 黄晓宇.2018.LncRNA和mRNA对仔猪C型产气荚膜梭菌腹泻抗性的调控机制研究[D].博士学位论文, 甘肃农业大学, 导师: 滚双宝, pp.42-96.
(Huang X Y.2018.Regulation Mechanism of Long Noncoding RNA (lnc RNA) and mRNA on Resisting to Piglet Diarrhea Caused by Clostridium perfringens Type C[D].Thesis for Ph.D., Gansu Agricultural University, Supervisor: Gun S B, pp.42-96.)
[4] 胡洁琼.2012.miR-339-3p和miR-339-5p在体外胃癌细胞中的表达及意义研究[D].硕士学位论文, 兰州大学,导师: 黄晓俊, pp.15-29.
(Hu J Q.2012.The expression and significance of miR-339-3p and miR-339-5p in vitro gastric carcinoma cell lines[D].Thesis for M.S., Lanzhou University,Supervisor: Huang X J, pp.15-29.)
[5] 刘恩照, 路利平, 刘运龄, 等.2017.microRNA-145通过CD40对泡沫细胞免疫炎症反应的影响[J].天津医药, 45(12): 1233-1236.
(Liu E Z, Lu L P, Liu Y L, et al.2017.The effect of microRNA-145 on immune inflammatory response of foam cells by targeting CD40[J].Tianjin Medical Journal, 45(12): 1233-1236.)
[6] 刘杰民, 张瑜, 古娟, 等.2018.健脾益肠散对溃疡性结肠炎大鼠CD40表达的影响[J].中医药信息, 35(05): 5-8.
(Liu J M, Zhang Y, Gu J, et al.2018.Effect of Jianpi Yichang Powder on CD40 expression in UC rats[J].Information on Traditional Chinese Medicine, 35(05): 5-8.)
[7] 孙丽, 吴森, 吴嘉韵, 等.2017.猪 miR-192对DLG5 和ALCAM基因的靶向作用关系验证[J].农业生物技术学报, 25(9): 1451-1459.
(Sun L, Wu S, Wu J Y, et al.2017.Validation of the targeting effects of swine (Sus scrofa) miR-192 on the DLG5 and ALCAM genes[J].Journal of Agricultural Biotechnology, 25(9): 1451-1459.)
[8] 周畅.2013.MicroRNA-339-5p/3p在结直肠癌中作用的研究[D].博士学位论文, 南方医科大学, 导师: 李学农, pp.99-114.
(Zhou C.2013.The studies of microRNA-339-5p/3p in colorectal cancer[D].Thesis for Ph.D., Southern Medical University, Supervisor: Li X N, pp.99-114.)
[9] Bai X Z, Zhang J L, Liu Y, et al.2018.MicroRNA-138 Aggravates inflammatory responses of macrophages by targeting SIRT1 and regulating the NF-κB and AKT pathways[J].Cellular Physiology and Biochemistry, 49(2): 489-500.
[10] Bao H, Kommadath A, Liang G X, et al.2015.Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine[J].Scientific Reports, 5: 12620.
[11] Bartel D P.2004.MicroRNAs: Genomics, biogenesis, mechanism, and function[J].Cell, 116(2): 281-297.
[12] Cartwright T, Perkins N D, L W.2016.NFKB1: A suppressor of inflammation, ageing and cancer.[J].FEBS Journal, 283: 1812-1822.
[13] Chan G, Farzan A, DeLay J, et al.2013.Aretrospective study on the etiological diagnoses of diarrhea in neonatal piglets in Ontario, Canada, between 2001 and 2010[J].Canadian Journal of Veterinary Research, 77(4): 254-260.
[14] Chen J, Cui X, Li L, et al.2017.MiR-339 inhibits proliferation of pulmonary artery smooth muscle cell by targeting FGF signaling[J].Physiological Reports, 5(18): e13441.
[15] Christodoulou F, Raible F, Tomer R, et al.2010.Ancient animal microRNAs and the evolution of tissue identity[J].Nature, 463(7284): 1084-1088.
[16] Dinh H, Hong Y H, Lillehoj H S, 2014.Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility[J].Veterinary Immunology and Immunopathology, 159(1-2): 74-82.
[17] Dominic D N, Balka K R, Yamel C G, et al.2018.Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling[J].Journal of Biological Chemistry, 293: 15195-15207.
[18] Hayden M S, Ghosh S.2004.Signaling to NF-κB[J].Genes & Development, 18(18): 2195-2224.
[19] Hong Y H, Dinh H, Lillehoj H S, et al.2014.Differential regulation of microRNA transcriptome in chicken lines resistant and susceptible to necrotic enteritis disease[J].
[20] ma ovipneunoniae[J].Chinese Journal of Preventive Veterinary Medicine, 40(4): 316-320.)
[21] 沈志强, 王金良, 郭显坡, 等.2011.SYBR Green Ⅰ实时荧光定量PCR检测猪细小病毒方法的建立[J].中国兽医学报, 31(1): 11-15.
(Shen Z Q, Wang J L, Guo X P, et al.2011.Development and application of SYBR-Green Ⅰreal-time quantitative PCR technique for detecting porcine parvovirus virus[J].Chinese Journal of Veterinary Science, 31(1): 11-15.)
[22] 王华, 杨发龙, 王永, 等.2011.山羊支原体性肺炎流行病学调查[J].中国畜牧兽医, 38(1): 210-214.
(Wang H, Yang F L, Wang Y, et al.2011.Epidemiological investigation of caprine Mycoplasma pneumoniae in Sichuan province[J].China Animal Husbandry & Veterinary Medicine, 38(1): 210-214.)
[23] 吴燕, 王琦, 周碧君, 等.2017.绵羊肺炎支原体贵州流行株P113基因序列分析[J].中国兽医学报, 36(5): 756-762.
(Wu Y, Wang Q, Zhou B J, et al.2017.Sequence analysis of P113 gene of Mycoplasma ovipneumoniae strains epidemic in Guizhou province[J].Chinese Veterinary Science, 36(5): 756-762.)
[24] 向志龙, 卓建华, 鲜思美, 等.2011.羊口疮病毒环介导等温扩增快速检测方法的建立及应用[J].中国兽医科学, 41(06): 588-592.
(Xiang Z L, Zhuo J H, Xian S M, et al.2011.Establishment and application of a loop-mediated isothermal amplification method for rapid detection of orf virus[J].Chinese Veterinary Science, 41(06): 588-592.)
[25] Amores J, Corrales J C, Gómez Martin A G, et al.2010.Comparison of culture and PCR to detect Mycoplasma agalactiae and Mycoplasma mycoides subsp.capri in ear swabs taken from goats[J].Veterinary microbiology, 140(1-2): 105-108.
[26] Besser T E, Cassirer E F, Potter K A, et al.2008.Association of Mycoplasma ovipneumoniae infection with population-limiting respiratory disease in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis)[J].Journal of Clinical Microbiology, 46(2): 423-430.
[27] Dassanayke R P, Shanthalingam S, Hemdon C N, et al.2010.Mycoplasma ovipneumoniae can predispose bighorn sheep to fatal Mannheimia haemolytica pneumonia[J].Veterinary Microbiology, 145(3-4): 354-359.
[28] Jones G E, Wood A R.1988.Microbiological and serological studies on caprine pneumonias Oman[J].Research in Veterinary Science, 44(1): 125-131.
[29] Kibe M K, Bidwell D E, Turp P, et al.1985.Demonstration of cross-reactive antigens in F38 and related mycoplasmas by enzyme-linked immunosorbent assay (ELISA) and immunoblotting[J].The Journal of Hygiene, 95(1): 95-106.
[30] McAuliffe L, Hatchell F M, Ayling R D, et al.2003.Detection of Mycoplasma ovipneumoniae in Pasteurella-vaccinated sheep flocks with respiratory disease in England[J].Veterinary Record, 153(22): 687-8.
[31] Rifatbegovic M, Maksimovic Z, Hulaj B, et al.2011.Mycoplasma ovipneumoniae associated with severe respiratory disease in goats[J].Veterinary Record, 168(21): 565.
[32] Sharew A D, Staak C, Thiaucourt F, et al.2005.A serological investigation into contagious caprine pleuropneumonia (CCPP) in Ethiopia[J].Tropical Animal Health and Production, 37(1): 11-19.
[33] Thirkell D, Spooner R K, Jones G E, et al.1991.Cross-reacting antigens between Mycoplasma ovipneumoniae and other species of mycoplasma of animal orgin, shown by ELISA and immunoblotting with reference antisera[J].Veterinary Microbiology, 26(3): 249-261.
[34] Yang F, Dao X, Rodriguez-Palacios A, et al.2014.A real-time PCR for detection and quantification of Mycoplasma ovipneumoniae[J].Journal of Veterinary Medical Science, 76(12): 1631-1634.