Genes Screening Related to Fat Metabolism Function and Analysis of Daqingshan Goat's (Capra hircus) Longissimus Dorsi Muscle of Different Ages Based on RNA-seq
ZHANG Bao-Jun1, TIAN Jian-Jun1, ZHANG Yan-Jun2, LI Jin-Quan2,3, LI Li-Jie1*, HE Yin-Feng1*
1 College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; 2 College of Animal Science, Inner
Mongolia Agricultural University, Hohhot 010018, China; 3 Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot 010018, China
Abstract:Daqingshan goat (Capra hircus) is one of the typical meat and cashmere goat groups in Inner Mongolia. There is a certain correlation between the accumulation of fat in muscle or metabolic of farmed animals and breeding time, way and so on. The fat content in the muscle has a direct impact on meat quality. In order to explore the transcriptome differences of meat quality and the data information of related genes in Daqingshan goats at different breeding stages, 3 Daqingshan goats of different ages (1.5, 2.5 and 3.5 years old) were used as research objects, the meat quality index of the longissimus dorsi was determined and the transcriptome was sequenced and analyzed. Results showed that the 3 age groups had no significant difference in drip loss and pH, but the crude fat content and the shear strength 3.5 years of age were significantly higher than the other 2 age groups (P<0.05). The results of transcriptome data showed that there were 468 differentially expressed genes (transcripts) between 1.5 and 2.5 years old, 487 differentially expressed genes (transcripts) between 1.5 and 3.5 years old, and 376 differentially expressed genes (transcripts) between 2.5 years old and 3.5 years old. The differentially expressed genes were enriched in 44, 41 and 28 metabolic pathways, respectively, and the differentially expressed genes in 3 age groups were enriched in 85 functional items. According to GO functional annotation and KEGG pathway enrichment analysis, 9 differentially expressed genes related to the metabolism or deposition of lipids were obtained. These genes were regulator of G protein signaling protein 2 (RGS2), estrogen-related receptor γ (ESRRG), peroxisome proliferators- activated receptor- γ coactivator 1 A (PPARGC1A), myotubularin-related protein 6 (MTMR6), ankyrin repeat domain 9 (ANKRD9), transmembrane protein 160 (TMEM160), XVI phospholipase A2 (group XVI phospholipase A2, PLA2G16), fos-like antigen 1 (FOSL1) and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4). Randomly selected RGS2, ANKRD9, FOSL1 and ADAMTS4 genes were verified by qPCR technology. Results showed that the trend of 4 genes expressed in 3 different age group were basically identical with the transcriptome sequencing results. The differentially expressed genes obtained in this study can provide basic data for the further study of meat quality characteristics of Daqingshan goat.
张保军, 田建军, 张燕军, 李金泉, 李丽杰, 贺银凤. 基于转录组测序对不同岁龄大青山山羊背最长肌中脂肪代谢相关基因的筛选及分析[J]. 农业生物技术学报, 2023, 31(6): 1193-1205.
ZHANG Bao-Jun, TIAN Jian-Jun, ZHANG Yan-Jun, LI Jin-Quan, LI Li-Jie1, HE Yin-Feng. Genes Screening Related to Fat Metabolism Function and Analysis of Daqingshan Goat's (Capra hircus) Longissimus Dorsi Muscle of Different Ages Based on RNA-seq. 农业生物技术学报, 2023, 31(6): 1193-1205.
[1] 安玉君, 娜仁花, 王志新, 等. 1998. 内蒙古不同类型白绒山羊染色体组型分析研究[J]. 内蒙古农牧学院学报 , (03): 17-21. (An Y J, Narenhua, Wang Z X, et al. 1998. Research and analysis of karyotype of different type white cashmere goat in Inner mongolia[J]. Journal of Inner Mongolia Institute of Agriculture & Animal Husbandry, (03): 17-21. ) [2] 白莹, 石玉祥, 杨俊琦, 等. 2015. PPARGC1A 基因在 3T3-L1 前脂肪细胞诱导分化过程中表达水平变化的研究[C]//. 河北省畜牧兽医学会, "转型升级、提质增效, 粪污处理, 环保生态'科技论文集. 《今日畜牧兽医》增刊, 石家庄 , pp. 51-54. (Bai Y, Shi Y X, Yang J Q, et al. 2015. Expression of PPARGC1A gene in 3T3-L1 preadipocytes during differentiation[C]//. Hebei Provincial Association of Animal Science and Veterinary Medicine, Collection of scientific and technological papers on "transformation and upgrading, quality and efficiency improvement, fecal sewage treatment, environmental protection and ecology". Today Animal Husbandry and Veterinary Medicine (Supplement), Shijiazhuang, 51-54. ) [3] 段小果. 2017. 大青山山羊肉肌纤维特性及品质的研究[D]. 硕士学位论文, 内蒙古农业大学, 导师: 贺银凤, pp. 1. (Duan X G. 2017. Study on muscle fiber fharacteristics and meat quality of Daqingshan goat[D]. Thesis for M. S. , Inner Mongolia Agricultural University, Supervisor: He Y F, pp. 1. ) [4] 樊红樱. 2016. 呼伦贝尔绵羊尾部脂肪组织的转录组差异表达分析[D]. 博士学位论文, 甘肃农业大学, 导师: 杜立新 , pp. 141. (Fan H Y. 2016. Transcriptomic difference analysis for tail adipose tissue of HuLun Buir sheep[D]. Thesis for Ph. D. , Gansu Agricultural University, Supervisor: Du L X, pp. 141. ) [5] Gandolfi G, 晋大鹏. 2011. 猪 PPARGC1A 和 CAPNS1 基因多态性及其与肉质性状的关联性分析[J]. 中国畜牧兽医 , 38(10): 44. (Gandolfi G, Jin D P. 2011. Polymorphism of PPARGC1A and CAPNS1 genes and their association with meat quality traits in pigs[J]. Chinese Animal Husbandry and Veterinary, 38(10): 44. ) [6] Lawrie, Ledward D A, 周光宏. 2009. Lawrie's 肉品科学[M]. 中国农业大学出版社, 北京. pp. 81. (Lawrie R A, Ledward D A, Zhou G H. 2009. Lawrie's meat science[M]. China Agricultural University Press, Beijing. pp. 81. ) [7] 郭俊强, 徐晓锋, 谢忠奎, 等. 2019. 脂肪酸对羊肉品质的影响研究进展[J]. 中国饲料, 23: 69-75. (Guo J Q, Xu X F, Xie Z K, et al. 2019. Effects of potato residue silage on growth performance, nutrients digestibility and blood biochemical of mutton sheep[J]. Chinese Feed, 23: 69-75. ) [8] 黄永震, 张桂民, 贺花, 等. 2018. 家养动物转录组学研究进展[J]. 中国牛业科学 , 44(01): 72-78. (Huang Y Z, Zhang G M, He H, et al. 2018. Advances in transcriptomics of domestic animals[J]. China Cattle Science, 44(01): 72-78. ) [9] 刘玉芳, 郭思武, 张清阳, 等. 2020. 金华猪 PPARGC1A 基因克隆、生物信息学分析及组织表达研究[J]. 中国畜牧兽医, 47(03): 696-705. (Liu Y F, Guo S W, Zhang Q Y, et al. Cloning, bioinformatics prediction and tissue expression analysis of PPARGC1A gene in Jinhua Pigs[J]. China Animal Husbandry & Veterinary Medicine, 47(03): 696-705. ) [10] 尚进. 2012. 苏尼特羊、巴美肉羊、小尾寒羊 PPARGC1α 基因突变与肉质的相关性研究[D]. 硕士学位论文, 内蒙古农业大学, 导师: 靳烨, pp. 27. (Shang J. 2012. Correlation of mutation in PPARGCla gene with meat traits in Sunit sheep, Bamei sheep, Small-tail Han sheep[D]. Thesis for M. S. , Inner Mongolia Agricultural University, Supervisor: Jin Y, pp. 27. ) [11] 李清, 邹丽影, 曾嘉颖, 等. 2017. 全反式维甲酸抑制大鼠骨髓间充质干细胞成脂分化信号通路中 Fosl1 直接调控 PPARγ2[J]. 中国病理生理杂志, 33(06): 1104-1111. (Li Q, Zou L Y, Zeng J Y, et al. 2017. Fosl1 regulates PPARγ2 in ATRA induced inhibition of adipogenic differentiation of rat bone marrow mesenchymal stem cells[J]. Chinese Journal of Pathophysiology, 33(06): 1104-1111. ) [12] 廖辉. 2017. ADAMTS2 和 ADAMTS4 基因对牛前体脂肪细胞分化及脂质沉积的影响[D]. 硕士学位论文, 河南科技大学 , 导师 : 庞有志 , pp. 50. (Liao H. 2017. The effect of ADAMTS2 and ADAMTS4 on cattle preadipocyte differentiation and lipid deposit[D]. Thesis for M. S. , Henan University of Science and Technology, Supervisor: Pang Y Z, pp. 50. ) [13] 刘远, 李文杨, 吴贤锋, 等. 2019. 福清山羊与努比亚黑山羊背最长肌比较转录组分析[J]. 中国农业科学, 52(14): 2525-2537. (Liu Y, Li W Y, Wu X F, et al. 2019. Transcriptome analysis of differentially gene expression associated with longissimus doris tissue in Fuqing goat and Nubian Black goat[J]. Scientia Agricultura Sinica, 52(14): 2525-2537. ) [14] 王杰, 原清会, 张明, 等. 2010. 中国荷斯坦奶牛 PPARGC1A 基因内含子 9 的 SNP 与产奶性状的相关分析[J]. 四川农业大学学报 , 28(02): 219-222. (Wang J, Yuan Q H, Zhang M, et al. 2010. Associationanalysis between SNP of intron9 in PPARGC1A gene and milking traits in Chinese Holstein breed[J]. Journal of Sichuan Agricultural University, 28(02): 219-222. ) [15] 乌日古木拉. 2012. 蒙古马运动候选基因 PPARGC1A 多态性和表达量研究[D]. 硕士学位论文, 内蒙古农业大学, 导师 : 芒来 , pp. 2. (Wurigumula. 2012. The investigation of polymorphism and expression's quantity on athletics candidate gene PPARGC1A in Mongolian Horses [D]. Thesis for M. S. , Inner Mongolia Agricultural University, Supervisor: Mang L, pp. 2. ) [16] 谢遇春. 2021. 内蒙古绒山羊脂肪酸代谢调控的研究[D]. 博士学位论文 , 内蒙古农业大学 , 导师 : 李金泉 , pp. 1. (Xie Y C. 2021. Regulation of fatty acids metabolism in Inner Mongolia cashmere goats[D]. Thesis for Ph. D. , Inner Mongolia Agricultural University, Supervisor: Li J Q, pp. 1. ) [17] 张保军. 2020. 大青山山羊肉质特性变化规律及转录组学分析[D]. 博士学位论文, 内蒙古农业大学, 导师: 贺银凤 , pp. 19-20. (Zhang B J. 2020. Variation courses of meat quality characteristics and transcriptomics analysis of Daqingshan goat[D]. Thesis for Ph. D. , Inner Mongolia Agricultural University, Supervisor: He Y F, pp. 19-20. ) [18] 赵伟利. 2015. 脂肪组织差异表达基因 RETN、CAV1、 PLA2G16 与阿勒泰羊尾脂沉积代谢关系的研究[D]. 硕士学位论文, 石河子大学, 导师: 尹君亮, pp. 48. (Zhao W L. 2015. Differentially expressed genes in adipose tissue research RETN, CAV1, PLA2G16 Altay sheep tail fat deposition and metabolic relationships[D]. Thesis for M. S. , Shihezi University, Supervisor: Yin J L, pp. 48. ) [19] 朱雯, 汤莹莹, 孙昕旸, 等. 2021. 低蛋白饲粮对山羊肝脏转录组的影响[J]. 生物技术通报, 37(09): 203-211. (Zhu W, Tang Y Y, Sun X Y, et al. 2021. Effect of low crude protein diet on liver transcriptome sequencing of growing goats[J]. Biotechnology Bulletin, 37(09): 203-211. ) [20] 姚文书. 2006. 猪 RGS2 和 Gαq/11 基因的克隆、定位及其生物特性研究[D]. 硕士学位论文, 华中农业大学, 导师: 杨在清. pp. 5. (Yao W S. 2006. Cloning, chromosome mapping, characterization of porcine RGS2 and Gaq/11 [D]. Thesis for M. S. , Huazhong Agricultural University, Supervisor: Yang Z Q, pp. 5. ) [21] Bauer D, Mueller H, Reich H, et al. 1993. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR)[J]. Nucleic Acids Research, 21: 4272-4280. [22] Chang S C, Zou J, Majerus P W, et al. 2006. Interaction between human myotubularin proteins MTMR6 and MTMR9[J]. The FASEB Journal, 20(4): A484. [23] Dong S S, Guo Y, Zhu D L, et al. 2016. Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits[J]. International Journal of Obesity: Official journal of the International Association for the Study of Obesity, 40(Suppl2): 1170-1176. [24] Hong J, Shi J, Qi L, et al. 2013. Genetic susceptibility, birth weight and obesity risk in young Chinese[J]. International Journal of Obesity, 37: 673-677. [25] Klepac K, Yang J H, Hildebrand S, et al. 2019. RGS2: A multifunctional signaling hub that balances brown adipose tissue function and differentiation[J]. Molecular Metabolism, 30: 173-183. [26] Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 12(4): 357-360. [27] Lee S H, Gondro C, van der Werf Jet al. 2010. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle)[J]. BMC Genomics, 11: 623. [28] Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 12: 323. [29] Li Y F, Zhai B, Yuan P T, et al. 2022. MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets[J]. Poultry Science, 101(2): 101557. [30] Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 15(12): 550. [31] Mochizuki Y, Ohashi R, Kawamura T, et al. 2013. Phosphatidylinositol 3-phosphatase myotubularin-related protein 6 (MTMR6) is regulated by small GTPase Rab1B in the early secretory and autophagic pathways[J]. The Journal of Biological Chemistry, 288(2):1009-1021. [32] Momen A, Afroze T, Sadi A M, et al. 2014. Enhanced proliferation and altered calcium handling in RGS2-deficient vascular smooth muscle cells[J]. Journal of Receptor and Signal Transduction Research, 34(6): 476-483. [33] Noordmans G A, Huang Y, Savage H, et al. 2014. Genetic analysis of intracapillary glomerular lipoprotein deposits in aging mice[J]. PLOS ONE, 9(10): e111308. [34] Osei-Owusu P, Blumer K J. 2015. Regulator of G protein signaling 2: A versatile regulator of vascular function[J]. Progress in Molecular Biology and Translational Science, 133: 77-92. [35] Pertea M, Pertea G M, Antonescu C M, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 33(3): 290-295. [36] Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 26(1): 139-140. [37] Sanoudou D, Duka A, Drosatos K, et al. 2010. Role of Esrrg in the fibrate-mediated regulation of lipid metabolism genes in human ApoA-I transgenic mice[J]. The Pharmacogenomics Journal, 10(3): 165-179. [38] Segelcke D, Fischer H K. , Hütte M, et al. 2021. Tmem160 contributes to the establishment of discrete nerve injuryinduced pain behaviors in male mice[J]. Cell Reports, 37(12): 110152. [39] Shen S, Park J W, Lu Z, et al. 2014. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proceedings of the National Academy of Sciences of the USA, 111(51): E5593-E5601. [40] Sobolev V V, Khashukoeva A Z, Evina O E, et al. 2022. Role of the transcription factor FOSL1 in organ development and tumorigenesis[J]. International Journal of Molecular Sciences, 23(3): 1521. [41] Srivastava S, Li Z, Lin L, et al. 2005. The phosphatidylinositol 3-phosphate phosphatase myotubularin- related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3. 1[J]. Molecular and cellular biology, 25(9): 3630-3638. [42] Wan Y J, Li D X, Deng M T, et al. 2021. Comprehensive transcriptome analysis of mRNA expression patterns of early embryo development in goat under hypoxic and normoxic conditions[J]. Biology, 10(5): 381. [43] Wang L, Feng Z, Wang X, et al. 2009. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 26(1): 136-138. [44] Xia W, Bai H S, Deng Y, et al. 2020. PLA2G16 is a mutant p53/KLF5 transcriptional target and promotes glycolysis of pancreatic cancer[J]. Journal of Cellular and Molecular Medicine, 24(21): 12642-12655. [45] Xie C, Mao X, Huang J, et al. 2011. KOBAS 2. 0: A web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Research, 39: W316-W322. [46] Xiong Y, Wang Y X, Xu Q, et al. 2021. LKB1 regulates goat Intramuscular adipogenesis through focal adhesion pathway[J]. Frontiers in Physiology, 12: 755598-755598. [47] Xu Q, Lin S, Li Y Q, et al. 2019. Fibroblast growth factor 21 regulates lipid accumulation and adipogenesis in goat intramuscular adipocyte[J]. Animal Biotechnology, 32(3):1-9. [48] Xu Q, Lin S, Wang Y, et al. 2018. Fibroblast growth factor 10 (FGF10) promotes the adipogenesis of intramuscular preadipocytes in goat[J]. Molecular Biology Reports, 45(6): 1881-1888. [49] Zou J,Chang S C, Marjanovic J, et al. 2009. MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis[J]. The Journal of Biological Chemistry, 284(4)2064-2071. [50] Williams M J, Almén M S, Fredriksson R, et al. 2012. What model organisms and interactomics can reveal about the genetics of human obesity[J]. Cellular and Molecular Life Sciences, 69(22): 3819-3834. [51] Yang L, Zheng L J, Xie X N, et al. 2022. Targeting PLA2G16, a lipid metabolism gene, by ginsenoside compound K to suppress the malignant progression of colorectal cancer[J]. Journal of Advanced Research, 36: 265-276.