Identification of Spot Blotch Resistance in Barley (Hordeum vulgare) and Genome-wide Association Study
QU Jie-Qiong1,2, ZHANG Yi1,2, YANG Qing-Li1,2, WANG Jun-Cheng1,2, YAO Li-Rong1,2, SI Er-Jing1,2, MA Xiao-Le1,2, LI Bao-Chun1,3, FANG Yong-Feng1,2, WANG Hua-Jun1,2, MENG Ya-Xiong1,2,*
1 State Key Laboratory of Aridland Crop Science, Gansu Agricultural University/Gansu Provincial Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
Abstract:Barley (Hordeum vulgare) is an important crop and industrial raw material, and spot blotch is one of the diseases that seriously endanger barley production. The disease mainly damages leaves and leaf sheaths, and its occurrence and prevalence seriously affect the yield and quality of barley. In order to explore the molecular markers related to barley spot blotch resistance, 142 barley materials were identified by artificial inoculation of spot blotch pathogen at seedling stage, and SSR molecular markers combined with phenotypic identification results of barley resistance to spot blotch were used for correlation analysis, so as to find effective resistance sites. The results showed that 504 alleles were detected from 70 SSR markers, with an average of 7.2 alleles per marker. The variation range of major allele frequency was 0.196 3 to 0.503 5, with an average of 0.344 2, and the variation range of PIC was 0.521 2 to 0.847 0. The genetic diversity index ranged from 0.600 7 to 0.862 4, and the population was divided into 5 groups by cluster analysis and population genetic structure analysis. A total of 6 SSR markers were detected, which were located on the 3H, 4H and 5H chromosomes of barley, respectively, and a QTL locus that confered resistance to barley spot blotch was finally determined on the 4H chromosome. The results of this study will be helpful for the breeding of barley variety, and the associated loci of barley spot blotch resistance obtained can provide reference for molecular marker-assisted breeding of barley.
曲洁琼, 张毅, 杨庆丽, 汪军成, 姚立蓉, 司二静, 马小乐, 李葆春, 方永丰, 王化俊, 孟亚雄. 大麦种质抗叶斑病鉴定和全基因组关联分析[J]. 农业生物技术学报, 2022, 30(12): 2267-2278.
QU Jie-Qiong, ZHANG Yi, YANG Qing-Li, WANG Jun-Cheng, YAO Li-Rong, SI Er-Jing, MA Xiao-Le, LI Bao-Chun, FANG Yong-Feng, WANG Hua-Jun, MENG Ya-Xiong. Identification of Spot Blotch Resistance in Barley (Hordeum vulgare) and Genome-wide Association Study. 农业生物技术学报, 2022, 30(12): 2267-2278.
[1] 陈明贤, 张国平. 2010. 全球大麦发展现状及中国大麦产业发展分析[J]. 大麦与谷类科学, (04): 1-4. (Chen M X, Zhang G P. 2010. Development status of global barley and development analysis of barley industry in china[J]. Barley&Cereal Sciences, (04): 1-4.) [2] 郭焕强, 王文峰, 姚全杰, 等. 2016. 大麦主栽品种亲缘系数和对叶斑病的抗性分析[J]. 植物遗传资源学报, 17(04): 586-598. (Guo H Q, Wang W F, Yao Q J, et al.2016. Analysis on coefficient of parentage of major barley varieties and their spot blotch resistance[J]. Journal of Plant Genetic Resources, 17(04): 586-598.) [3] 胡倩文, 徐延浩, 王容, 等. 2020. 大麦4个穗部性状的关联分析[J]. 浙江农业学报, 32(11): 1941-1953. (Hu Q W, Xu Y H, Wang R, et al.2020. Association analysis of four spike traits in barley[J]. Acta Agriculture Zhejiangensis, 32(11): 1941-1953.) [4] 黄志磊, 李葆春, 汪军成, 等. 2019. 不同抗性大麦品种对叶斑病的生理响应及主成分分析[J]. 麦类作物学报, 39(05): 605-612. (Huang Z L, Li B C, Wang J C, et al.2019. Physiological response and its principal component analysis with different resistances to Bipolaris sorokiniana[J]. Journal of Triticeae Crops, 39(05): 605-612.) [5] 赖勇, 王晋民, 任龙, 等. 2016. 大麦SSR标记遗传多样性及连锁不平衡分析[J]. 核农学报, 30(10): 1889-1897. (Lai Y, Wang J M, Ren L, et al.2016. Genetic diversity and linkage disequilibrium analysis of barley using SSR markers[J]. Journal of Nuclear Agricultural Sciences, 30(10): 1889-1897.) [6] 赖勇, 贾建磊, 王晋民, 等. 2017. 外引大麦SSR标记遗传多样性及其与农艺性状的关联分析[J]. 麦类作物学报, 37(02): 197-204. (Lai Y, Jia J L, Wang J M, et al.2017. Analysis of genetic diversity and association with agronomic traits in barley (Hordeum vulgare L.) introduced from abroad using SSR markers[J]. Journal of Triticeae Crops. 37(02): 197-204.) [7] 吕二锁, 张凤英, 蔺瑞明, 等. 2015. 大麦种质资源苗期根腐病抗性鉴定[J]. 大麦与谷类科学, (03): 30-34. (Lu E S, Zhang F Y, Lin R M, et al. 2015. Assessment of root rot resistance in a collection of barely germplasm at the seedling stage[J]. Barley&Cereal Sciences, (3): 30-34.) [8] 孟亚雄, 张海娟, 马小乐, 等. 2016. 89份大麦遗传多样性分析及其网斑病抗性位点相关SSR标记筛选[J]. 农业生物技术学报, 24(12): 1820-1830. (Meng Y X, Zhang H J, Ma X L, et al.2016. Genetic diversity and screening of SSR markers associated with net blotch resistance in 89 barley (Hordeum vulgare) cultivars[J]. Journal of Agricultural Biotechnology, 24(12): 1820-1830.) [9] 庞云星, 陈琳, 郭焕强, 等. 2020. 61份大麦种质资源对蠕孢菌叶斑病的抗性鉴定[J]. 植物病理学报, 50(05): 602-609. (Pang Y X, Chen L, Guo H Q, et al.2020. Evaluation of resistance in 61 barley germ plasm accessions to spot blotch caused by Bipolaris sorokiniana[J]. Acta Phytopathologica Sinica, 50(05): 602-609.) [10] 秦丹丹, 杜静, 许甫超, 等. 2020. 基于SSR标记的大麦种质资源遗传多样性分析[J]. 大麦与谷类科学, 7(06): 1-8. (Qin D D, Du J, Xu F C, et al.2020. Genetic diversity analysis of barley germplasm resources based on SSR markers[J]. Barley&Cereal Sciences, 7(06): 1-8.) [11] 司二静, 赖勇, 孟亚雄, 等. 2015. 大麦遗传多样性及SSR标记与大麦条纹病抗性关联分析[J]. 农业生物技术学报, 23(02): 193-202. (Si E J, Lai Y, Meng Y X, et al.2015. Genetic diversity and association analysis of SSR markers with leaf stripe resistance in barley (Hordeum vulgare)[J]. Journal of Agricultural Biotechnology, 23(2): 193-202.) [12] 司二静, 杨淑莲, 孟亚雄, 等. 2019. 大麦蛋白质含量与SSR标记的关联分析[J].麦类作物学报, 39(03): 283-290. (Si E J, Yang S L, Meng Y X, et al.2019. Association analysis beween protein content and SSR markers in barley[J]. Journal of Triticeae Crops, 39(03): 283-290.) [13] 王保通, 李高宝, 李强, 等. 2007. 陕甘川豫主要后备小麦品种对中国条锈菌优势种群苗期抗性的聚类分析[J]. 植物保护学报, 34(05): 500-506. (Wang B T, Li G B, Li Q, et al.2007. Cluster analysis of majar and candidate cultivars of wheat for dominant populations of stripe rust in seedling stage from Shaanxi, Gansu, Sichuan and Henan provinces[J]. Acta Phytophylacica Sinica, 34(05): 500-506.) [14] 王晋, 王世红, 赖勇, 等. 2014. 大麦SSR标记遗传多样性及群体遗传结构分析[J]. 核农学报, 28(02): 177-185. (Wang J, Wang S.H, Lai Y, et al.2014, Genetic diversity and population structure analysis by using SSR markers in barley[J], Journal of Nuclear Agricultural Sciences, 28(2): 177-185.) [15] 魏添梅, 昌小平, 闵东红, 等. 2010. 小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘[J]. 作物学报, 36(06): 895-904. (Wei T M, Chang X P, Min D H, et al.2010. Analysis of genetic diversity and tapping elite alleles for plant heigh in drought-tolerant wheat varieties[J]. Acta Agronomica Sinica, 36(6): 895-904.) [16] 许秀玉, 张勇, 甘先华, 等. 2020. 木麻黄青枯病抗性与EST-SSR标记的关联分析[J]. 林业与环境科学, 36(03): 10-17. (Xu X Y, Zhang Y, Gan X H, et al.2020. Correlation analysis of bacterial wilt resistance and EST-SSR markers in casuarina[J]. Forestry and Environmental Science, 36(03): 10-17.) [17] 杨春葆, 原红军. 2019. 利用SSR标记分析青稞白粉病抗性遗传多样性[J]. 西藏农业科技, 41(S1): 16-26. (Yang C B, Yuan H J.2019. Genetic analysis of powdery mildew resistance in hulless barley (Hordeum vulgare Linn. var. nudum Hook. F.) by SSR markers[J]. Tibet Journal of Agricultural Sciences, 41(S1): 16-26.) [18] 杨建明, 沈秋泉, 汪军妹, 等. 2003. 我国大麦生产、需求与育种对策[J]. 大麦科学, (01): 1-6. (Yang J M, Sheng Q Q, Wang J M, et al. 2003. Barley production demand and breeding in china[J]. Barley Science, (01): 1-6.) [19] 杨云, 贺小伦, 胡艳峰, 等. 2015. 黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性[J]. 麦类作物学报, 35(03): 339-345. (Yang Y, He X L, Hu Y F, et al.2015. Resistance of wheat cultivars in Huang-Huai region of china to crown rot caused by Fusarium pseudograminearum[J]. Journal of Triticeae Crops, 35(03): 339-345.) [20] 姚全杰, 郭焕强, 陈琳, 等. 2019. 大麦种质对叶斑病的抗性鉴定与评价[J]. 植物病理学报, 49(01): 75-82. (Yao Q J, Guo H Q, Chen L, et al.2019. Investigation and evaluation of barley germ plasm accessions resistance to spot blotch[J]. Acta Phytopathologica Sinica, 49(01): 75-82.) [21] 张凤英, 郭富国, 刘志萍. 2002. 内蒙古大麦生产现状、发展思路与对策探讨[J]. 内蒙古农业科技, (02): 23-25. (Zhang F Y, Guo F G, Liu Z P. 2002. Discussion on current situation, development ideas and countermeasures of barley production in Inner mongolia[J]. Inner Mongolia Agricultural Sciences and Technology, (02): 23-25.) [22] 张海娟. 2016. 大麦网斑病病原菌的分离鉴定及大麦种质抗网斑病的关联分析[D]. 硕士学位论文, 甘肃农业大学, 导师: 孟亚雄, pp. 2-55. (Zhang H J.2016. Separation identification of Pyrenophorateres and association analysis of barley germplasm for resisting barley net blotch[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Meng Y X, pp. 2-55.) [23] 张军, 武耀廷, 郭旺珍, 等. 2000. 棉花微卫星标记的PAGE/银染快速检测[J]. 棉花学报,(05): 267-269; 282. (Zhang J, Wu Y Y, Guo W Z, et al.2000. Fast screening of microsatellite markers in cotton with PAGE/silver staining[J]. Acta Gossypii Sinica,(05): 267-269; 282.) [24] 张秋, 郭栋, 樊庆琦, 等. 2012. 山东省部分小麦种质成株期和苗期白粉病抗性鉴定[J]. 山东农业科学, 44(05): 86-88. (Zhang Q, Guo D, Fan Q Q, et al.2012. Resistance identification of some wheat germplasms from shandong province to powdery mildew at adult and seedling stages[J]. Shandong Agricultural Sciences, 44(05): 86-88.) [25] 张想平, 何庆祥, 钱永康, 等. 2009. 德国啤酒大麦品种的性状评价及综合利用研究[J]. 中国农学通报, 25(20): 104-107. (Zhang X P, He Q X, Qian Y K, et al.2009. Characters assessment and comprehensive utilization of germany malting barley varieties[J]. Chinese Agricultural Science Bulletin, 25(20): 104-107.) [26] 赵锋, 潘永东, 包奇军, 等. 2020. 甘肃省大麦产业发展现状及发展对策[J]. 甘肃农业科技, (11): 78-84. (Zhao F, Pan Y D, Bao Q J, et al. 2020. Development situation and countermeasures of barely industry in Gansu[J]. Gansu Agricultural Science and Technology, (11): 78-84.) [27] 钟源, 赵小强. 2021. 187份玉米自交系抗旱性评价及SSR标记关联分析[J]. 干旱地区农业研究, 39(03): 1-8; 50. (Zhong Y, Zhao X Q.2021. Evaluation on drought resistance of 187 maize inbred lines and association analysis with SSR markers[J]. Agricultural Research in the Arid Areas, 39(03): 1-8; 50.) [28] 朱靖环, 刘猛道, 华为, 等. 2015. 139份大麦种质材料苗期和成株期抗白粉病鉴定评价[J]. 麦类作物学报, 35(05): 614-621. (Zhu J H, Liu M D, Hua W, et al.2015. Identification of resistance to powdery mldew of 139 barley varieties (lines) at adult and seedling stages[J]. Journal of Triticeae Crops, 35(05): 614-621.) [29] Arabi M I E, Daoude A A L, Mokrani L, et al.2021. Identification of AFLP markers associated with spot blotch resistance through single marker analysis in barley (Hordeum vulgare L.)[J]. Cereal Research Communications, 49: 285-290. [30] Fetch T G, Steffenson B J.1999. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus[J]. Plant Disease, 83(3): 213-217. [31] Fetch T G, Steffenson B J, Nevo E.2003. Diversity and sources of multiple disease resistance in Hordeum spontaneum[J]. Plant Disease, 87(12): 1439-1448. [32] Grewal T S, Rossnagel B G, Pozniak C J, et al.2008. Mapping quantitative trait loci associated with barley net blotch resistance[J]. Theoretical and Applied Genetics, 116(4): 529-39. [33] Guo H, Yao Q, Chen L, et al.2019. Virulence and molecular diversity in the Cochliobolus sativus population causing barley spot blotch in china[J]. Plant Disease, 103(9): 2252-2262. [34] Gupta P K, Rustgi S, Kulwal P L.2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects[J]. Plant Molecular Biology, 57(4): 461-485. [35] Roy J K, Smith K P, Muehlbauer G J, et al.2010. Association mapping of spot blotch resistance in wild barley[J]. Molecular Breeding. 26(2): 243-256. [36] Visioni A, Rehman S, Viash S S, et al.2020. Genome wide association mapping of spot blotch resistance at seedling and adult plant stages in barley[J]. Front Plant Science. 11(1): 642. [37] Zondervan K T, Cardon L R.2004. The complex interplay among factors that influence allelic association[J]. Nature Reviews Genetics, 5(2): 89-100.