Screening of SNPs in GHRH and Association Analysis with Growth Traits in Grass Carp (Ctenopharyngodon idella)
SUN Xue1,2, LI Sheng-Jie1,*, DU Jin-Xing1, JIANG Peng1, ZHOU Jia-Hui1,2, BAI Jun-Jie1
1 Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Guangzhou 510380, China; 2 National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:Growth hormone-releasing hormone (GHRH) plays an important role in regulating the release of growth hormone in animals. In order to study the relationship between the GHRH gene polymorphism and growth traits in grass carp (Ctenopharyngodon idella), the cDNA and DNA sequence of GHRH gene (GenBank No. 2446387) were obtained by PCR amplification. Total length of cDNA and DNA sequence of GHRH were 602 and 5 244 bp, respectively, including 5 exons and 4 introns. Through direct sequencing, 12 SNP were identified in the DNA sequence, which located at 670, 1 798, 2 340, 2 782, 3 925, 4 227, 4 371, 4 420, 4 497, 4 976, 5 025 and 5 232 bp, respectively. After analysis with SNaPshot technique and General linear model, T+3925C, G+4227A, T+4420A, C+4497T, A+4976G and G+5025T were linked to form haplotype marker D1, and 4 SNPs were shown to have significant correlation with the growth traits in grass carp, which were C+1798T, T+2340C, A+2782T and haplotype D1 marker, respectively. The body weight in individuals with CC genotype in C+1798T was significantly higher than TT genotype (P<0.05); the body weight, body length, body height and head length in individuals with TT genotype in T+2340C were significantly higher than CT genotype (P<0.05); the body weight and body length in individuals with AA genotype in A+2782T were significantly higher than the other 2 genotypes (P<0.05); the body weight in individuals with EE genotype in haplotype D1 (TTGGTTCCAAGG) were significantly higher than the other 2 genotype (P<0.05). The linkage disequilibrium analysis of the 4 markers showed that the 2 combinations were in a strong linkage disequilibrium state (D'>0.8), which included 6 haplotypes: H1 (CTAE), H2 (TTTF), H3 CTTF), H4 (CTTE), H5 (CCTE) and H6 (TTAE). The body weight in haplotype combination of H1/H1 (CCTTAAEE) was significantly higher than that of other haplotype combinations (except H1/H3, P<0.01), which was 9.96% higher than the average body weight of the population. In conclusion, C+1798T, T+2340C, A+2782T, haplotype D1 markers and haplotype combination H1/H1 in GHRH were significantly correlated with growth traits, which provides candidate markers for marker assisted breeding in grass carp, and contributes to accelerate the breeding process of grass carp.
孙雪, 李胜杰, 杜金星, 姜鹏, 周家辉, 白俊杰. 草鱼GHRH基因SNPs的筛选及其与生长性状的关联分析[J]. 农业生物技术学报, 2021, 29(5): 963-972.
SUN Xue, LI Sheng-Jie, DU Jin-Xing, JIANG Peng, ZHOU Jia-Hui, BAI Jun-Jie. Screening of SNPs in GHRH and Association Analysis with Growth Traits in Grass Carp (Ctenopharyngodon idella). 农业生物技术学报, 2021, 29(5): 963-972.
[1] 曹婷婷, 白俊杰, 于凌云, 等. 2012. 草鱼羧肽酶A1基因(CPA1)部分片段的单核苷酸多态性(SNP)多态性及其与生长性状的关联分析[J]. 农业生物技术学报, 20(3): 301-307. (Cao T T, Bai J J, Yu L Y, et al.2012. Single nucleotide polymorphisms (SNP) of carboxypeptidase A1 gene (CPA1) segments and their association with the growth traits of grass carp[J]. Chinese Journal of Agricultural Biotechnology, 20(3): 301-307.) [2] 陈昆平, 卢迈新, 刘志刚, 等. 2018. 吉富尼罗罗非鱼Ikaros基因5′调控区的克隆、序列分析及抗无乳链球菌相关SNP位点筛选[J]. 中国水产科学, 25(02): 237-250. (Chen K P, Lu M X, Liu Z G, et al.2018. Molecular cloning analysis of the 5′ regulatory region of Ikaros gene from Oreochromis niloticus and screening of its SNP markers for Streptococcus agalactiae resistance[J]. Chinese Aquatic Science, 25(02): 237-250.) [3] 樊佳佳, 刘小献, 白俊杰. 2014. 草鱼柠檬酸合酶基因SNP筛选及与生长性状的关联分析[J]. 华中农业大学学报, 33(3): 84-89. (Fan J J, Liu X X, Bai J J, et al.2014. Detection of SNP in citrate synthase gene and association analysis with growth traits in grass carp (Ctenopharyngodon idellus)[J]. Journal of Huazhong Agricultural University, 33(3): 84-89.) [4] 高风英, 卢迈新, 黎建平, 等. 2016. 尼罗罗非鱼β2m基因的克隆、多态性分析及组织表达特征[J]. 农业生物技术学报, 24(10): 1588-1599. (Gao F Y, Lu M X, Li J P, et al.2016. Cloning, molecular polymorphism and expression pattern of β2m gene in nile tilapia (Oreochromis niloticus)[J]. Journal of Agricultural Biotechnology, 24(10): 1588-1599.) [5] 郭亚芬, 李芳芳, 兰干球, 等. 2007. 广西巴马小型猪促生长激素释放激素成熟肽的克隆及序列分析[J]. 实验动物科学, 5(6): 6-10. (Guo Y F, Li F F, Lan G Q, et al.2007. Cloning and sequence analysis of growth hormone release hormone (GHRH) mature peptide from Guangxi Bama minipig[J]. Laboratory Animal Science, 5(6): 6-10.) [6] 韩林强, 白俊杰, 李胜杰. 2011. 大口黑鲈Ghrh-Lp和Ghrh基因序列同源性、基因结构和时序表达研究[J]. 水生生物学报, 35(03): 473-481. (Han L Q, Bai J J, Li S J.2011. Comparison of gene structure, sequence homology and expression pattern of largemouth bass GHRH-LP and GHRH[J]. Acta Hydrobiologica Sinica, 35(3): 473-481.) [7] 季晓芬, 段辛斌, 刘绍平. 2018. 基于微卫星评估草鱼放流亲本对野生群体遗传多样性的影响[J]. 水产学报, 1(5): 10-17. (Ji X F, Duan X B, Liu S P.2018. Effects of releasing parents of grass carp on genetic diversity of wild population based on Microsatellite[J]. Journal of Fisheries of China, 1(5): 10-17.) [8] 李浩, 孟德龙, 薛宝宝, 等. 2019. 缢蛏Α-淀粉酶基因外显子区域SNPs筛选及其与生长性状关联性[J]. 海洋渔业, 41(2): 214-223. (Li H, Mai D L, Xue B B, et al.2019. SNPs detection of α-amylase exon region and its association with growth traits in Sinonovacula constricta[J]. Marine Fisheries, 41(2): 214-223.) [9] 全迎春, 马冬梅, 白俊杰, 等. 2016. 大口黑鲈转录组SNPs筛选及其与生长的关联分析[J]. 水生生物学报, 40(06): 1128-1134. (Quan Y C, Ma D M, Bai J J, et al.2016. SNPS identification in RNA-Seq data of largemouth bass (Micropterus Salmoides) fed on formulated feed and association analysis with growth trait[J].Acta Hydrobiologica Sinica, 4(06): 1128-1134.) [10] 孙金豪, 梁坤伦, 王海鹤. 2015. 信阳水牛促生长激素释放激素基因第4外显子的Pcr扩增及变异检测[J]. 河南科技, 6(12): 114-116. (Sun J H, Liang K L, Wang H H.2015. PCR amplification and mutation detection of GHRH gene based on 4th exon sequences for Xinyang buffalo[J]. Journal of Henan Science and Technology, 6(12): 114-116.) [11] 徐永杰, 吴海港, 姚瑾, 等. 2012. 信阳水牛GHRH基因第二外显子的SNPs检测[J]. 中国牛业科学, 38(04): 1-5. (Xu Y J, Wu H G, Yao J, et al.2012. SNPs detection of GHRH gene on the 2th exon region in Xinyang buffalo[J]. China Cattle Science, 38(4): 1-5.) [12] 薛倩, 王金玉, 张跟喜, 等. 2015. 黑素皮质素受体3基因(MR3R)多态性及其单倍型组合与京海黄鸡屠体性状的关联分析[J]. 农业生物技术学报, 23(03): 344-351. (Xue Q, Wang J, Zhang G, et al.2015. Polymorphism of melanocortin 3 receptor gene (MC3R) and association analysis between the diplotypes and the carcass traits in jinghai yellow chicken[J]. Journal of Agricultural Biotechnology, 23(03): 344-351). [13] 袁晓峰, 俞银江, 赵博, 等. 2018. 萨X哈杂交母羊Ghrh基因与生长性状关联分析[J]. 畜牧与饲料科学, 2018,39(06):22-23. (Yuan X F, Yu Y J, Zhao B, et al.2018. Correlation analysis between GHRH gene and growth traits in suffolk and kazak crossbred ewe[J]. Animal Husbandry and Feed Science, 39(06): 22-23.) [14] 张力. 2013. SPSS19.0在生物统计中的应用[M]. 厦门大学出版社, 厦门. pp. 137-145. (Zhang L Z, 2013. Application of SPSS19.0 in Biostatistics[M]. Xiamen University Press, Xiamen. pp. 137-145.) [15] 张世勇, 钟立强, 钦秦, 等. 2016. 斑点叉尾鮰GHRH基因3个SNPs位点及其单倍型组合与生长性状的关联分析[J]. 水生生物学报, 40(5): 886-893. (Zhang S Y, Zhong L Q, Qin Q, et al.2016. Three SNPs polymorphism of growth hormone-releasing hormone gene (GHRH) and association analysis with growth traits in channel catfish[J]. Acta Hydrobiologica Sinica, 40(5): 886-893.) [16] 张永亮, 欧阳红生, 刘松财, 等. 2016. 生长激素释放因子(GRF)在动物肌肉组织的表达[J]. 中国兽医学报, 3(3):329-341. (Liang Z.2000. Expression of modified growth hormone releasing factor gene in animal skeletal muscle[J]. Chinese Journal of Veterinary Ence, 3(3): 329-341.) [17] Akey J, Jin L, Xiong M.2001. Haplotypes vs single marker linkage disequilibrium tests: What do we gain?[J]. European Journal of Human Genetics, 9(4): 291-300. [18] Camargo G M F, Costa R B, Albuquerque L G, et al.2015. Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle[J]. Reproduction, Fertility and Development, 27(3): 523-528. [19] Cheong H S, Yoon D, Kim L H, et al.2006. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in korean cattle[J]. BMC Genetics, 7(1): 35. [20] Fan Y, Y R, T B.2000. POPGENE 32, Microsoft windows-based freeware for population genetic analysis[J]. University of Alberta, 2(6): 12-16. [21] Farmer C.1993. Validation of a culture system for porcine pituitary cells: Effects of growth hormone-releasing factor and(or) somatostatin on growth hormone secretion[J]. Journal of Animal Ence, 4(71): 923-929. [22] Fradinger E A, Sherwood N M.2000. Characterization of the gene encoding both growth hormone-releasing hormone (GRF) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the zebrafish[J]. Molecular and Cellular Endocrinology, 165(1): 211-219. [23] Franco M M, Antunes R C, Silva H D, et al.2005. Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in landrace pigs[J]. Journal of Applied Genetics, 46(2): 195-200. [24] Guo L, Xia J, Yang S, et al.2015. GHRH, PRP-PACAP and GHRHR target sequencing via an ion torrent personal genome machine reveals an association with growth in orange-spotted grouper (Epinephelus coioides)[J]. International Journal of Molecular Sciences, 16(11): 26137-26150. [25] Hohenlohe P A, Bassham S, Currey M, et al.2012. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587): 395-408. [26] Li S, Liu H, Bai J, et al.2017. Transcriptome assembly and identification of genes and SNPs associated with growth traits in largemouth bass (Micropterus Salmoides)[J]. Genetica, 145(2): 175-187. [27] Ruxandra D.1999. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs[J]. Nature Biotechnology, 12(17): 1179-1183. [28] Slatkin M.2008. Linkage disequilibrium-understanding the evolutionary past and mapping the medical future[J]. Nature Reviews Genetics, 9(6): 477-485. [29] Tao W J, Boulding E G.2003. Associations between single nucleotide polymorphisms in candidate genes and growth rate in arctic charr (L.)[J]. Heredity, 91(1): 60-69. [30] Xu Y X, Zhu Z Y, Lo L C, et al.2006. Characterization of two parvalbumin genes and their association with growth traits in asian seabass (Lates Calcarifer)[J]. Animal Genetics, 37(3): 266-268. [31] Yuan Z, Li J, Li J, et al.2013. SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 Gene[J]. Molecular Biology Reports, 40(1): 7-12. [32] Yu L, Bai J, Cao T, et al.2014. Genetic variability and relationships among six grass carp ctenopharyngodon idella populations in china estimated using EST-SNP markers[J]. Fisheries Science, 80(3): 475-481.