Development and Validation of SSR Markers Closely Linked to Thin Shell in Tartary Buckwheat (Fagopyrum tataricum)
CHEN Zheng-Feng1, XUE Xian-Bin1, LI Rui-Yuan2, JIA Qiong1, CHEN Qing-Fu1, SHI Tao-Xiong1,*
1 Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China; 2 Key Laboratory of Information and Computing Science of Guizhou Province, Guiyang 550001, China
Abstract:Tartary buckwheat (Fagopyrum tataricum) is one of the important coarse grain crops. Different shell types lead to different hulling efficiency, which has great influence on the development of Tartary buckwheat industry. At present, there are few molecular markers study on Tartary buckwheat shell types. The development of molecular markers is helpful to judge the types of Tartary buckwheat shells, and also provides reference for the improvement of Tartary buckwheat shell characteristics and selection of Tartary buckwheat germplasm. In this study, SSR markers were developed based on the loci interval of Tartary buckwheat thin shell gene traits. The results showed that a total of 286 SSRs were detected in the 1.4 Mb mapping interval of thin-shell type. Mono- and di-nucleotide repeat types were the most numerous, and there were 92 and 103, respectively. A/T and AT/AT is the most abundant motifs in mono-nucleotid and di-nucleotide repeat types, respectively. Repeat number of SSR types concentrated between 4 and 10 times. A total of 186 pairs of SSR primers were successfully designed, and 5 pairs of SSR markers, FtgGKssr-82, FtgGKssr-131, FtgGKssr-147, FtgGKssr-149 and FtgGKssr-175, showed polymorphism between the parents of RILs population. The linkage analyses of the phenotype marker for hull type and the 5 SSR markers in RILs population indicated that marker FtgGKssr-149 and FtgGKssr-175 were most closely linked to shell type. Correlation analysis between the shell rate and the 5 SSR markers by using 32 Tartary buckwheat varieties (lines) showed that the markers FtgGKssr-147, FtgGKssr-149 and FtgGKssr-175 were closely related to the shell rate. In this study, 3 SSR markers that were closely linked to the hull type and significantly associated with the shell rate of Tartary buckwheat could be used for marker-assisted selection of Tartary buckwheat germplasms with thin hull, which is of high importance in accelerating the breeding process of thin-hull Tartary buckwheat varieties.
[1] 曹恒春, 王毅, 黄莉莎, 等. 2013. 可可全基因组SSR标记的开发及分析[J]. 山东农业大学学报(自然科学版), 44(03): 340-344. (Cao H C, Wang Y, Huang L S, et al.2013. Large-scale development of SSR markers in the genome of cacao[J]. Journal of Shandong Agricultural University (Natural Science), 44(03): 340-344.) [2] 陈庆富. 2012. 荞麦属植物科学[M]. 科学出版社, 北京. pp. 54. (Chen Q F. 2012. Plant Sciences on Genus Fagopyrum[M]. Science Press, Beijing. pp. 54.) [3] 陈庆富. 2018. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展[J]. 贵州师范大学学报(自然科学版), 36(03): 1-7, 131.(Chen Q F. 2018. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat[J]. Journal of Guizhou Normal University (Natural Sciences), 36(03): 1-7, 131.) [4] 陈庆富, 陈其饺, 石桃雄, 等. 2015. 苦荞厚果壳性状的遗传及其与产量因素的相关性研究[J]. 作物杂志, 31(02): 27-31, 2.(Chen Q F, Chen Q J, Shi T X, et al. 2015. Study on heredity of thick fruit shell traits of Tartary buckwheat and its correlation with yield factors[J]. Crops, 31(02): 27-31, 2.) [5] 崔娅松, 王艳, 杨丽娟, 等. 2019. 米苦荞果壳率及其相关性状的遗传研究[J]. 作物杂志, 35(02): 51-60. (Cui Y S, Wang Y, Yang L J, et al.2019. Genetic analysis of fruit hull rate and related traits on Tartary buckwheat[J]. Crops, 35(02): 51-60.) [6] 杜伟, 王东航, 侯思宇, 等. 2020. 基于苦荞全长转录组测序开发SSR标记及遗传多样性分析[J]. 植物生理学报, 56(07): 1432-1444. (Du W, Wang D H, Hou S Y, et al.2020. Development of SSR markers based on full-length transcriptome sequencing and its application for genetic diversity analysis in Fagopyrum tataricum[J]. Plant Physiology Communications, 56(07): 1432-1444.) [7] 杜晓磊, 张宗文, 吴斌, 等. 2013. 苦荞SSR分子遗传图谱的构建及分析[J]. 中国农学通报, 29(21): 61-65. (Du X L, Zhang Z W, Wu B, et al.2013. Construction and analysis of genetic linkage map in Tartary buckwheat (Fagopyrum tataricum) using SSR[J]. Chinese Agricultural Science Bulletin, 29(21): 61-65.) [8] 范昱, 丁梦琦, 张凯旋, 等. 2020. 中国野生荞麦种质资源概况与利用进展[J]. 植物遗传资源学报, 21(06): 1395-1406. (Fan Y, Ding M Q, Zhang K X, et al.2020. Overview and utilization of wild germplasm resources of the genus Fagopyrum Mill. in China[J]. Journal of Plant Genetic Resources, 21(06): 1395-1406.) [9] 贺润丽, 尹桂芳, 李春花, 等. 2020. 苦荞种皮转录组SSR位点信息分析及其分子标记的开发[J]. 分子植物育种, 18(18): 6085-6092. (He R L, Yin G F, Li C H, et al.2020. Development of molecular markers and SSR loci information analysis of transcriptome in Tartary buckwheat seed coat[J]. Molecular Plant Breeding, 18(18): 6085-6092.) [10] 黎瑞源, 梁龙兵, 石桃雄, 等. 2017. 苦荞重组自交系群体F5代SSR遗传图谱的构建[J]. 贵州师范大学学报(自然科学版), 35(04): 31-45. (Li R Y, Liang L B, Shi T X, et al.2017. Construction of a microsatellite-based genetic map of Tartary buckwheat using F5 recombinant inbred lines[J]. Journal of Guizhou Normal University (Natural Sciences), 35(04): 31-45.) [11] 黎瑞源, 潘凡, 陈庆富, 等. 2015. 苦荞转录组EST-SSR发掘及多态性分析[J]. 中国农业科技导报, 17(04): 42-52. (Li R Y, Pan F, Chen Q F, et al.2015. Excavation and polymorphism analysis of EST-SSR from transcriptome of Tartary buckwheat[J]. Journal of Agricultural Science and Technology, 17(04): 42-52.) [12] 李兴翠, 李广存, 徐建飞, 等. 2017. 四倍体马铃薯熟性连锁SCAR标记的开发与验证[J]. 作物学报, 43(06): 821-828. (Li X C, Li G C, Xu J F, et al.2017. Development and verification of SCAR marker linked to maturity in Tetraploid Potato[J]. Acta Agronomica Sinica, 43(06): 821-828.) [13] 李月. 2014. 普通荞麦种质资源农艺性状评价和SSR遗传多样性研究[D]. 硕士学位论文, 贵州师范大学, 导师: 陈庆富, pp. 39-40. (Li Y.2014. Genetic diversity of common buckwheat germplasm resources by SSR markers and their evaluation on agronomic traits[D]. Thesis for M.S., Guizhou Normal University, Supervisor: Chen Q F, pp. 39-40.) [14] 刘仁杰, 王月娇, 郭宏伟, 等. 2009. 荞麦蛋白复合物对糖尿病小鼠降血糖作用的研究[J]. 吉林农业大学学报, 31(01): 102-104. (Liu R J, Wang Y J, Guo H W, et al.2009. Study on the effect of Buckwheat protein in lowering blood glucose of diabetic mice[J]. Journal of Jilin Agricultural University, 31(01): 102-104.) [15] 吕丹. 2020. 苦荞种质资源产量性状和籽粒黄酮含量与SSR标记的关联分析[D]. 硕士学位论文, 贵州师范大学, 导师: 石桃雄, pp. 31-32. (Lv D.2020. Association analysis of yield traits and flavonoids content in grains with SSR markers in Tartary buckwheat germplasms[D]. Thesis for M.S., Guizhou Normal University, Supervisor: Shi T X, pp. 31-32.) [16] 马名川, 刘龙龙, 刘璋, 等. 2021. 苦荞全基因组SSR位点特征分析与分子标记开发[J]. 作物杂志, 37(01): 38-46. (Ma M C, Liu L L, Liu Z, et al.2021. Analysis of SSR loci in Tartary buckwheat genome and development of molecular markers[J]. Crops, 37(01): 38-46.) [17] 石桃雄, 黎瑞源, 潘凡, 等. 2021. 苦荞黄酮含量与SSR标记的关联分析[J]. 福建农业学报, 36(08): 884-891. (Shi T X, Li R Y, Pan F, et al.2021. Correlation between flavonoids content and SSR markers of Tartary buckwheat[J]. Fujian Journal of Agricultural Sciences, 36(08): 884-891.) [18] 舒守贵, 冯波, 王涛. 2005. 荞麦种子的蛋白质研究[J]. 种子, 24(12):42-49. (Shu S G, Fen B, Wang T.2005. Study on protein of buckwheat seeds[J]. Seed, 24(12): 42-49.) [19] 王瑞, 陈雪, 郭青青, 等. 2022. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 48(03): 759-769. (Wang R, Chen X, Guo Q Q, et al.2022. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L.[J]. Acta Agronomica Sinica, 48(03): 759-769.) [20] 张曼, 田娟, 孙墨可, 等. 2021. 基于向日葵全基因组序列的SSR标记开发及鉴定[J/OL]. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20210114.0904.002.html. (Zhang M, Tian J, Sun M K, et al. 2021. Development of SSR molecular markers based on whole genome of sunflower[J/OL]. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20210114. 0904.002.html [21] 赵钢, 唐宇, 王安虎. 2001. 苦荞的成分功能研究与开发应用[J]. 四川农业大学学报, 19(04): 355-358, 368.(Zhao G, Tang Y, Wang A H. 2001. Research of composition and function of Tartary buckwheat and its development and application[J]. Journal of Sichuan Agricultural University, 19(04): 355-358, 368.) [22] Bradshaw J E, Hackett C A, Pande B, et al.2008. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum)[J]. Theoretical and Applied Genetics, 116(2): 193-211. [23] Fukuie Y, Shimoyama H, Morishita T, et al.2020. A putative AGAMOUS ortholog is a candidate for the gene determining ease of dehulling in Tartary buckwheat (Fagopyrum tataricum)[J]. Planta, 251(4): 85-94. [24] Guo X N, Zhu K X, Zhang H, et al.2010. Anti-Tumor activity of a novel protein obtained from Tartary buckwheat[J]. International Journal of Molecular Sciences, 11(12): 5201-5211. [25] Li C H, Xie Z M, Wang Y Q, et al.2019. Correlation and genetic analysis of seed shell thickness and yield factors in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.)[J]. Breeding Science, 69(3): 464-470. [26] Li H Y, Wu C X, Lv Q Y, et al.2020. Comparative cellular, physiological and transcriptome analyses reveal the potential easy dehulling mechanism of Rice-Tartary buckwheat (Fagopyrum tararicum)[J]. BMC Plant Biology, 20(1): 505-521. [27] Li Y Y, Zhang Z, Wang Z H, et al.2009. rBTI induces apoptosis in human solid tumor cell lines by loss in mitochondrial transmembrane potential and caspase activation[J]. Toxicology Letters, 189(2): 166-175. [28] Liu M Y, Fu Q K, Ma Z T, et al.2019. Genome-wide investigation of the MADS gene family and dehulling genes in Tartary buckwheat (Fagopyrum tataricum)[J]. Planta, 249(5): 1301-1318. [29] Luo X Y, Fei Y, Xu Q Z, et al.2020. Isolation and identification of antioxidant peptides from Tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities[J]. Journal of Food Science, 85(3): 611-617. [30] Shi T X, Li R Y, Zheng R, et al.2021. Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics, 22(1): 142-153. [31] Song C, Ma C R, Xiang D B.2019. Variations in accumulation of lignin and cellulose and metabolic changes in seed hull provide insight into dehulling characteristic of Tartary buckwheat seeds[J]. International Journal of Molecular Sciences, 20(3): 524-533. [32] Thao D V, Yamashita M, Watanabe A, et al.2013. Development of tetranucleotide microsatellite markers in Pinus kesiya Royle ex Gordon[J]. Conservation Genetics Resources,5(2): 405-407. [33] Wei X, Wang L H, Zhang Y X, et al.2014. Development of simple sequence repeat (SSR) markers of sesame (Sesamum indicum) from a genome survey[J]. Molecules (Basel, Switzerland), 19(4): 5150-5162. [34] Wang Y J, Campbell C G.2007. Tartary buckwheat breeding (Fagopyrum tataricum L. Gaertn.) through hybridization with its Rice-Tartary type[J]. Euphytica, 156(3): 399-405. [35] Zhang L J, Ma M C, Liu L L.2020. Identification of genetic locus underlying easy dehulling in Rice-Tartary for easy postharvest processing of Tartary buckwheat[J]. Genes, 11(4): 459-468. [36] Zhou X L, Wen L, Li Z J, et al.2015. Advance on the benefits of bioactive peptides from buckwheat[J]. Phytochemistry Reviews, 14(3): 381-388.