Complementary Expression Vector Construction and Drought Resistance Analysis of GhGGB Gene in Cotton (Gossypium hirsutum)
HU Zi-Yao1,*, AERZUGULI·Ta-Shi2,*, LEI Jian-Feng2, DAI Pei-Hong1, LIU Jian-Fei1, DENG Jia-Hui1, LIU Chao1, LIU Xiao-Dong1, LI Yue1,**
1 College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; 2 College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
Abstract:GGB (geranyl geranyltransferase beta) gene encodes type Ⅰ protein geranyltransferase, which is involved in protein isoprene modification and plays an important regulatory role in plant response to stress. In order to explore the biological function of GhGGB gene in cotton (Gossypium hirsutum), the plant complementary expression vector pBI101-AtGGBP-GhGGB-AtGGBT was constructed and transformed into ggb mutant of Arabidopsis thaliana, and GhGGB transgenic lines were screened. Phenotypic, physiological and biochemical indexes of GhGGB transgenic lines, ggb mutant and wild type Arabidopsis Col-0 under natural drought stress were detected. The results showed that with wild-type Arabidopsis Col-0 as the control, the sensitivity of transgenic GhGGB plants to drought stress was significantly enhanced, while the ggb mutant plants showed stronger drought resistance. The determination results of physiological indexes of each component were consistent with the phenotype, indicating that GhGGB gene complemented the functional deficiency of ggb mutant in Arabidopsis and reduced drought tolerance. The results of this study preliminarily showed that GhGGB was a negative regulatory gene for drought resistance, which provides a new gene selection for cotton drought-resistant germplasm cultivation.
胡子曜, 阿尔祖古丽·塔什, 雷建峰, 代培红, 柳建飞, 邓嘉辉, 刘超, 刘晓东, 李月. 棉花GhGGB基因互补表达载体的构建及其抗旱性分析[J]. 农业生物技术学报, 2022, 30(9): 1687-1697.
HU Zi-Yao, AERZUGULI·Ta-Shi, LEI Jian-Feng, DAI Pei-Hong, LIU Jian-Fei, DENG Jia-Hui, LIU Chao, LIU Xiao-Dong, LI Yue. Complementary Expression Vector Construction and Drought Resistance Analysis of GhGGB Gene in Cotton (Gossypium hirsutum). 农业生物技术学报, 2022, 30(9): 1687-1697.
[1] 丛日征, 张吉利, 王思瑶, 等. 2020. 植物抗寒性鉴定及其生理生态机制研究进展[J]. 温带林业研究, 3(1): 27-33. (Cong R Z, Zhang J L, Wang S Y, et al.2020. Research progress of plant cold resistance identification and its physiological and ecological mechanism[J]. Journal of Temperate Forestry Research, 3(1): 27-33.) [2] 冯春晓, 郝志军, 高健民, 等. 2018. 干旱胁迫下NaCl对棉花幼苗抗氧化酶活性及水分特征的影响[J]. 干旱地区农业研究, 36(06): 98-103. (Feng C X, Hao Z J, Gao J M, et al.2018. Effect of NaCl on antioxidant enzyme activities and water status in cotton seedling under drought stress[J]. Agricultural Research in the Arid Areas, 36(6): 98-103.) [3] 姜华, 毕玉芬, 陈连仙, 等. 2012. 旱作条件下紫花苜蓿生理特性的研究[J]. 草地学报, 20(06): 1077-1080. (Jiang H, Bi Y F, Cheng L X, et al.2012. Physiological characteristics of alfalfa under dry-farming conditions[J]. Acta Agrestia Sinica, 20(06): 1077-1080.) [4] 孔丽颖, 李翔, 李才运, 等. 2016. 棉花GbCBF2基因的克隆、互补表达载体的构建及遗传转化[J]. 华北农学报, 31(1): 40-45. (Kong L Y, Li X, Li C Y, et al.2016. Cloning, complementary expression vector construction and transformation of GbCBF2 gene from cotton[J]. Acta Agriculturae Boreali-Sinica, 31(01): 40-45.) [5] 雷建峰. 2016. 棉花U6启动子克隆与功能分析及拟南芥GGB突变体的创制[D]. 硕士学位论文, 新疆农业大学, 导师: 张巨松, 刘晓东, pp. 40-41. (Lei J F.2016. Cloning and functional analysis of U6 promoters in cotton and creation of Arabidopsis GGB mutant[D]. Thesis for M.S., Xinjiang Agricultural University, Supervisor: Zhang J S, Liu X D, pp. 40-41.) [6] 玛迪娜·木拉提, 孙婷婷, 代培红, 等. 棉花GhGGB基因的克隆与表达分析[J/OL]. 分子植物育种: 1-14 [2021-12-18]. http://kns.cnki.net/kcms/detail/46.1068.S.20211126.0956.006.html. [7] 雷建峰, 徐新霞, 李月, 等. 2016. CRISPR/Cas9介导靶向敲除拟南芥GGB基因突变体的鉴定[J]. 西北植物学报, 36(5): 857-864. (Lei J F, Xu X X, Li Y, et al.2016. Identification of GGB mutant caused by CRISPR/Cas9 in Arabidopsis[J]. Acta Botanica Boreali-Occidentalia Sinica, 36(05): 857-864.) [8] 李惠, 梁杏, 刘延锋, 等. 2017. 基于氢氧稳定同位素识别干旱区棉花水分利用来源[J]. 地球科学, 42(5): 843-852. (Li H, Liang X, Liu Y F, et al.2017. Application of hydrogen and oxygen stable isotopes for determining water sources used by cotton in Xinjiang arid region[J]. Earth Science, 42(05): 843-852.) [9] 李燕, 孙明高, 孔艳菊, 等. 2006. 皂角苗木对干旱胁迫的生理生化反应[J]. 华南农业大学学报, 27(03): 66-69. (Li Y, Sun M G, Kong Y J, et al.2006. Physiological and biochemical responses of gleditsia sinensis seedlings to drought stress[J]. Journal of South China Agricultural University, 27(03): 66-69.) [10] 栗锦鹏, 孙晓琛, 原静静, 等. 2021. 拉蔓期党参响应干旱胁迫生理机制[J/OL]. 分子植物育种, 1-16 (2021-10-25). http://kns.cnki.net/kcms/detail/46.1068.S.20211022.1157.006.html. [11] 裴金玲, 杨红兰, 李春平, 等. 2012. 转晚期胚胎发生丰富蛋白(LEA)基因棉花及抗旱性分析[J]. 分子植物育种, 10(03): 331-337. (Pei J L, Yang H L, Li C P, et al.2012. Transgenic cotton with late embryogenesis abundant protein (LEA) gene and its drought tolerance[J]. Molecular Plant Breeding, 10(03): 331-337.) [12] 唐淑荣. 2017. 中国棉花纤维品质综合评价与区域特征分布研究[D]. 博士学位论文, 南京农业大学, 导师: 周治国, pp. 2-6. (Tang S R.2017. Comprehensive evaluation and study on regional characteristics distribution of cotton fiber quality in China[D]. Thesis for Ph.D., Nanjing Agricultural University, Supervisor: Zhou Z G, pp. 2-6.) [13] 王学奎. 2006. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, pp. 228-269. (Wang X K.2006. Pinciples and Techniques of Pinciples and Techniques of Experiment[M]. Higher Education Press, Beijing, China, pp. 228-269.) [14] 王玉. 2013. 基于时序光谱库的棉花种植面积信息提取研究[D]. 硕士学位论文, 中国地质大学, 导师: 付梅臣, 王力, pp. 9-13. (Wang Y.2013. Research on cotton planting areas extraction based on MODIS-EVI time-series data base[D]. Thesis for M.S., China University of Geosciences, Supervisor: Fu M C, Wang L, pp. 2-6.) [15] 王准, 张恒恒, 董强, 等. 2020. 棉花耐低氮和氮敏感种质筛选及验证[J]. 棉花学报, 32(06): 538-551. (Wang Z, Zhang H H, Dong Q, et al.2020. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm[J]. Cotton Science, 32(6): 538-551.) [16] 魏鑫, 王寒涛, 魏恒玲, 等. 2020. 陆地棉GhWRKY33的克隆及抗旱功能分析[J]. 中国农业科学, 53(22): 4537-4549. (Wei X, Wang H T, Wei H L, et al.2020. Cloning and drought resistance analysis of GhWRKY33 in upland cotton[J]. Scientia Agricultura Sinica, 53(22): 4537-4549.) [17] 徐国瑞, 刘济明, 闫国华, 等. 2010. 罗甸小米核桃叶绿素含量测定方法研究[J]. 山地农业生物学报, 29(05): 419-423. (Xu G R, Liu J M, Yan G H, et al.2010. Quantification methods of chlorophyll from Juglans regia L. f. luodianense[J]. Journal of Mountain Agriculture and Biology, 29(05): 419-423.) [18] 杨晓龙. 2019. 不同生育期干旱胁迫对水稻产量品质影响的生理机制研究[D]. 博士学位论文, 华中农业大学, 导师: 曹凑贵, pp. 8-9. (Yang X L.2019. Physiological mechanism of drought stress at different growth stages on rice yield and quality[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Cao C G, pp. 8-9.) [19] 杨梅, 段新航, 王召誉, 等. 2021. 外源MeJA对低温、干旱和NaCl胁迫紫花苜蓿幼苗生理特性的影响[J/OL]. 分子植物育种, 1-11 (2021-10-24). http://kns.cnki.net/kcms/detail/46.1068.S.20211009.1223.004.html. [20] Andrews M, Huizinga D H, Crowell D N.2010. The CaaX specificities of Arabidopsis proteinprenyltranseferases explain era1 and ggb phenotypes[J]. BMC Plant Biology, 10(1): 118. [21] Crowell D N, Huizinga D H.2009. Protein is oprenylation: The fat of the matter[J]. Trends in Plant Science, 14(3): 163-170. [22] Crowell D N, Huizinga D H, Deem A K, et al.2010. Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine[J]. Plant Journal, 50(5): 839-847. [23] Cutler S, Ghassemian M, Bonetta D, et al.1996. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis[J]. Science, 273(5279): 1239-1241. [24] Dai J L, Dong H Z.2014. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures[J]. Field Crops Research, 155: 99-110. [25] Farhangi-Abriz S, Torabian S.2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 137(4): 64-70. [26] Gill S S, Tuteja N.2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 48(12): 909-930. [27] Gosset D R, Banks S W, Millhollon E P, et al.1996. Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione[J]. Plant Physiology, 112(2): 803-809. [28] Griffiths H, Parry M A.2002. Plant responses to water stress[J]. Annals of Botany, 89(7): 801-802. [29] Hasegawa P M, Bressan R A, Zhu J K, et al.2000. Plant cellular and molecular response to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1): 463-499. [30] Jalakas P, Huang Y C, Yeh Y H, et al.2017. The Role of enhanced responses to ABA1 (ERA1) in Arabidopsis stomatal responses is beyond ABA signaling[J]. Plant Physiology, 174(2): 665-671. [31] Johnson C D, Chary S N, Chernoff E A, et al.2005. Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis[J]. Plant Physiology, 139(2): 722-733. [32] Khan T A, Fariduddin Q, Yusuf M.2017. Low-temperature stress: Is phytohormones application a remedy?[J]. Environmental Science and Pollution Research International, 24(27): 21574-21590. [33] Manmathan H, Shaner D, Snelling J, et al.2013. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance[J]. Journal of Experimental Botany, 64(5): 1381-1392. [34] Mehari T G, Xu Y C, Magwanga R O, et al.2021. Identification and functional characterization of Gh_D01G0514 (GhNAC072) transcription factor in response to drought stress tolerance in cotton[J]. Plant Physiology and Biochemistry, 166: 361-375. [35] Pei Z M, Ghassemian M, Christine M K, et al.1998. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss[J]. Science, 282(5387): 287-290. [36] Wang Y, Ying J F, Kuzma M, et al.2005. Molecular tailoring of farnesylation for plant drought tolerance and yield protection[J]. The Plant Journal, 43(3): 413-424. [37] Yalovsky S, Kulukian A, Rodríguez-Concepción M, et al.2000. Functional requirement of plant farnesyltransferase during development in Arabidopsis[J]. Plant Cell, 12(8): 1267-1278. [38] Zhang J B, He S P, Luo J W, et al.2020. A histone deacetylase, GhHDT4D, is positively involved in cotton response to drought stress[J]. Plant Molecular Biology, 104(1-2): 1-13.